- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000200001000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Goyal, Naisargi (3)
-
Shabeeb, Zain (3)
-
Attah_Nantogmah, Pagnaa (2)
-
Jamali, Vida (2)
-
Jamali, vida (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The motion of nanoparticles in complex environments can provide us with a detailed understanding of interactions occurring at the molecular level. Liquid phase transmission electron microscopy (LPTEM) enables us to probe and capture the dynamic motion of nanoparticles directly in their native liquid environment, offering real time insights into nanoscale motion and interaction. However, linking motion to interactions to decode the underlying mechanisms of motion and interpret interactive forces at play is challenging, particularly when closed-form Langevin-based equations are not available to model the motion. Herein, we present LEONARDO, a deep generative model that leverages a physics-informed loss function and an attention-based transformer architecture to learn the stochastic motion of nanoparticles in LPTEM. We demonstrate that LEONARDO successfully captures statistical properties suggestive of the heterogeneity and viscoelasticity of the liquid cell environment surrounding the nanoparticles.more » « less
-
Shabeeb, Zain; Goyal, Naisargi; Jamali, Vida (, Microscopy and Microanalysis)
-
Shabeeb, Zain; Goyal, Naisargi; Attah_Nantogmah, Pagnaa; Jamali, vida (, Microscopy and Microanalysis, Oxford Academic)
An official website of the United States government

Full Text Available