Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Arpaci-Dusseau, Andrea ; Keeton, Kimberly (Ed.)Just-in-time (JIT) compilers make JavaScript run efficiently by replacing slow JavaScript interpreter code with fast machine code. However, this efficiency comes at a cost: bugs in JIT compilers can completely subvert all language-based (memory) safety guarantees, and thereby introduce catastrophic exploitable vulnerabilities. We present Icarus: a new framework for implementing JIT compilers that are automatically, formally verified to be safe, and which can then be converted to C++ that can be linked into browser runtimes. Crucially, we show how to build a JIT with Icarus such that verifying the JIT implementation statically ensures the security of all possible programs that the JIT could ever generate at run-time, via a novel technique called symbolic meta-execution that encodes the behaviors of all possible JIT-generated programs as a single Boogie meta-program which can be efficiently verified by SMT solvers. We evaluate Icarus by using it to re-implement components of Firefox's JavaScript JIT. We show that Icarus can scale up to expressing complex JITs, quickly detects real-world JIT bugs and verifies fixed versions, and yields C++ code that is as fast as hand-written code.more » « lessFree, publicly-accessible full text available November 4, 2025
-
Free, publicly-accessible full text available September 29, 2025
-
Web privacy is challenged by pixel-stealing attacks, which allow attackers to extract content from embedded iframes and to detect visited links. To protect against multiple pixelstealing attacks that exploited timing variations in SVG filters, browser vendors repeatedly adapted their implementations to eliminate timing variations. In this work we demonstrate that past efforts are still not sufficient. We show how web-based attackers can mount cache-based side-channel attacks to monitor data-dependent memory accesses in filter rendering functions. We identify conditions under which browsers elect the non-default CPU implementation of SVG filters, and develop techniques for achieving access to the high-resolution timers required for cache attacks. We then develop efficient techniques to use the pixel-stealing attack for text recovery from embedded pages and to achieve high-speed history sniffing. To the best of our knowledge, our attack is the first to leak multiple bits per screen refresh, achieving an overall rate of 267 bits per second.more » « lessFree, publicly-accessible full text available August 14, 2025
-
null (Ed.)We describe Swivel, a new compiler framework for hardening WebAssembly (Wasm) against Spectre attacks. Outside the browser, Wasm has become a popular lightweight, in-process sandbox and is, for example, used in production to isolate different clients on edge clouds and function-as-a-service platforms. Unfortunately, Spectre attacks can bypass Wasm's isolation guarantees. Swivel hardens Wasm against this class of attacks by ensuring that potentially malicious code can neither use Spectre attacks to break out of the Wasm sandbox nor coerce victim code—another Wasm client or the embedding process—to leak secret data. We describe two Swivel designs, a software-only approach that can be used on existing CPUs, and a hardware-assisted approach that uses extension available in Intel® 11th generation CPUs. For both, we evaluate a randomized approach that mitigates Spectre and a deterministic approach that eliminates Spectre altogether. Our randomized implementations impose under 10.3% overhead on the Wasm-compatible subset of SPEC 2006, while our deterministic implementations impose overheads between 3.3% and 240.2%. Though high on some benchmarks, Swivel's overhead is still between 9× and 36.3× smaller than existing defenses that rely on pipeline fences.more » « less
-
We present VeRA, a system for verifying the range analysis pass in browser just-in-time (JIT) compilers. Browser developers write range analysis routines in a subset of C++, and verification developers write infrastructure to verify custom analysis properties. Then, VeRA automatically verifies the range analysis routines, which browser developers can integrate directly into the JIT. We use VeRA to translate and verify Firefox range analysis routines, and it detects a new, confirmed bug that has existed in the browser for six years.more » « less