skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 10:00 PM ET on Friday, December 8 until 2:00 AM ET on Saturday, December 9 due to maintenance. We apologize for the inconvenience.

Search for: All records

Creators/Authors contains: "Shafer, Padraic"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. An electrically conductive metal typically transmits or absorbs a spin current. Here, we report on evidence that interfacing two metal thin films can suppress spin transmission and absorption. We examine spin pumping in spin-source/spacer/spin-sink heterostructures, where the spacer consists of metallic Cu and Cr thin films. The Cu/Cr spacer largely suppresses spin pumping—i.e., neither transmitting nor absorbing a significant amount of spin current—even though Cu or Cr alone transmits a sizable spin current. The antiferromagnetism of Cr is not essential for the suppression of spin pumping, as we observe similar suppression with Cu/V spacers with V as a nonmagnetic analog of Cr. We speculate that diverse combinations of spin-transparent metals may form interfaces that suppress spin pumping, although the underlying mechanism remains unclear. Our work may stimulate a new perspective on spin transport in metallic multilayers.

    more » « less
    Free, publicly-accessible full text available October 1, 2024
  2. In ferromagnetic metals, transverse spin currents are thought to be absorbed via dephasing—i.e., destructive interference of spins precessing about the strong exchange field. Yet, due to the ultrashort coherence length of ≈1 nm in typical ferromagnetic thin films, it is difficult to distinguish dephasing in the bulk from spin-flip scattering at the interface. Here, to assess which mechanism dominates, we examine transverse spin-current absorption in ferromagnetic NiCu alloy films with reduced exchange fields. We observe that the coherence length increases with decreasing Curie temperature, as weaker dephasing in the film bulk slows down spin absorption. Moreover, nonmagnetic Cu impurities do not diminish the efficiency of spin-transfer torque from the absorbed spin current. Our findings affirm that the transverse spin current is predominantly absorbed by dephasing inside the nanometer-thick ferromagnetic metals, even with high impurity contents.

    more » « less
  3. Magnetic properties and interfacial phenomena of epitaxial perovskite oxides depend sensitively on parameters such as film thickness and strain state. In this work, epitaxial La 0.67 Sr 0.33 CoO 3 (LSCO)/La 0.67 Sr 0.33 MnO 3 (LSMO) bilayers were grown on NdGaO 3 (NGO) and LaAlO 3 (LAO) substrates with a fixed LSMO thickness of 6 nm, and LSCO thickness (t LSCO ) varying from 2 to 10 nm. Soft x-ray magnetic spectroscopy revealed that magnetically active Co 2+ ions that strongly coupled to the LSMO layer were observed below a critical t LSCO for bilayers grown on both substrates. On LAO substrates, this critical thickness was 2 nm, above which the formation of Co 2+ ions was quickly suppressed leaving only a soft LSCO layer with mixed valence Co 3+ /Co 4+ ions. The magnetic properties of both LSCO and LSMO layers displayed strong t LSCO dependence. This critical t LSCO increased to 4 nm on NGO substrates, and the magnetic properties of only the LSCO layer displayed t LSCO dependence. A non-magnetic layer characterized by Co 3+ ions and with a thickness below 2 nm exists at the LSCO/substrate interface for both substrates. The results contribute to the understanding of interfacial exchange spring behavior needed for applications in next generation spintronic and magnetic memory devices. 
    more » « less
  4. Free, publicly-accessible full text available February 1, 2024
  5. Free, publicly-accessible full text available April 1, 2024
  6. null (Ed.)