skip to main content


Search for: All records

Creators/Authors contains: "Shah, Nisarg"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available October 1, 2025
  2. We study the problem of designing voting rules that take as input the ordinal preferences of n agents over a set of m alternatives and output a single alternative, aiming to optimize the overall happiness of the agents. The input to the voting rule is each agent’s ranking of the alternatives from most to least preferred, yet the agents have more refined (cardinal) preferences that capture the intensity with which they prefer one alternative over another. To quantify the extent to which voting rules can optimize over the cardinal preferences given access only to the ordinal ones, prior work has used the distortion measure, i.e., the worst-case approximation ratio between a voting rule’s performance and the best performance achievable given the cardinal preferences. The work on the distortion of voting rules has been largely divided into two “worlds”: utilitarian distortion and metric distortion. In the former, the cardinal preferences of the agents correspond to general utilities and the goal is to maximize a normalized social welfare. In the latter, the agents’ cardinal preferences correspond to costs given by distances in an underlying metric space and the goal is to minimize the (unnormalized) social cost. Several deterministic and randomized voting rules have been proposed and evaluated for each of these worlds separately, gradually improving the achievable distortion bounds, but none of the known voting rules perform well in both worlds simultaneously. In this work, we prove that one can in fact achieve the “best of both worlds” by designing new voting rules, both deterministic and randomized, that simultaneously achieve near-optimal distortion guarantees in both distortion worlds. We also prove that this positive result does not generalize to the case where the voting rule is provided with the rankings of only the top-t alternatives of each agent, for t < m, and study the extent to which such best-of-both-worlds guarantees can be achieved. 
    more » « less
  3. We design online algorithms for the fair allocation of public goods to a set of N agents over a sequence of T rounds and focus on improving their performance using predictions. In the basic model, a public good arrives in each round, and every agent reveals their value for it upon arrival. The algorithm must irrevocably decide the investment in this good without exceeding a total budget of B across all rounds. The algorithm can utilize (potentially noisy) predictions of each agent’s total value for all remaining goods. The algorithm’s performance is measured using a proportional fairness objective, which informally demands that every group of agents be rewarded proportional to its size and the cohesiveness of its preferences. We show that no algorithm can achieve better than Θ(T/B) proportional fairness without predictions. With reasonably accurate predictions, the situation improves significantly, and Θ(log(T/B)) proportional fairness is achieved. We also extend our results to a general setting wherein a batch of L public goods arrive in each round and O(log(min(N,L) ·T/B)) proportional fairness is achieved. Our exact bounds are parameterized as a function of the prediction error, with performance degrading gracefully with increasing errors. 
    more » « less
  4. We initiate the study of fairness among classes of agents in online bipartite matching where there is a given set of offline vertices (aka agents) and another set of vertices (aka items) that arrive online and must be matched irrevocably upon arrival. In this setting, agents are partitioned into a set of classes and the matching is required to be fair with respect to the classes. We adopt popular fairness notions (e.g. envy-freeness, proportionality, and maximin share) and their relaxations to this setting and study deterministic and randomized algorithms for matching indivisible items (leading to integral matchings) and for matching divisible items (leading to fractional matchings).For matching indivisible items, we propose an adaptive-priority-based algorithm, MATCH-AND-SHIFT, prove that it achieves (1/2)-approximation of both class envy-freeness up to one item and class maximin share fairness, and show that each guarantee is tight. For matching divisible items, we design a water-filling-based algorithm, EQUAL-FILLING, that achieves (1-1/e)-approximation of class envy-freeness and class proportionality; we prove (1-1/e) to be tight for class proportionality and establish a 3/4 upper bound on class envy-freeness. 
    more » « less
  5. We design online algorithms for fair allocation of public goods to a set of N agents over a sequence of T rounds and focus on improving their performance using predictions. In the basic model, a public good arrives in each round, and every agent reveals their value for it upon arrival. The algorithm must irrevocably decide the investment in this good without exceeding a total budget of B across all rounds. The algorithm can utilize (potentially noisy) predictions of each agent’s total value for all remaining goods. The algorithm's performance is measured using a proportional fairness objective, which informally demands that every group of agents be rewarded proportional to its size and the cohesiveness of its preferences. We show that no algorithm can achieve better than Θ(T/B) proportional fairness without predictions. With reasonably accurate predictions, the situation improves significantly, and Θ(log(T/B)) proportional fairness is achieved. We also extend our results to a general setting wherein a batch of L public goods arrive in each round and O(log(min(N,L)T/B)) proportional fairness is achieved. Our exact bounds are parameterized as a function of the prediction error, with performance degrading gracefully with increasing errors.

     
    more » « less
  6. Persistent memory enables a new class of applications that have persistent in-memory data structures. Recoverability of these applications imposes constraints on the ordering of writes to persistent memory. But, the cache hierarchy and memory controllers in modern systems may reorder writes to persistent memory. Therefore, programmers have to use expensive flush and fence instructions that stall the processor to enforce such ordering. While prior efforts circumvent stalling on long latency flush instructions, these designs under-perform in large-scale systems with many cores and multiple memory controllers.We propose ASAP, an architectural model in which the hardware takes an optimistic approach by persisting data eagerly, thereby avoiding any ordering stalls and utilizing the total system bandwidth efficiently. ASAP avoids stalling by allowing writes to be persisted out-of-order, speculating that all writes will eventually be persisted. For correctness, ASAP saves recovery information in the memory controllers which is used to undo the effects of speculative writes to memory in the event of a crash.Over a large number of representative workloads, ASAP improves performance over current Intel systems by 2.3 on average and performs within 3.9% of an ideal system. 
    more » « less
  7. null (Ed.)

    The notion of distortion in social choice problems has been defined to measure the loss in efficiency---typically measured by the utilitarian social welfare, the sum of utilities of the participating agents---due to having access only to limited information about the preferences of the agents. We survey the most significant results of the literature on distortion from the past 15 years, and highlight important open problems and the most promising avenues of ongoing and future work.

     
    more » « less
  8. null (Ed.)
    The notion of distortion in social choice problems has been defined to measure the loss in efficiency - typically measured by the utilitarian social welfare, the sum of utilities of the participating agents - due to having access only to limited information about the preferences of the agents. Here, we provide a comprehensive reading list on the related literature. 
    more » « less