We design online algorithms for fair allocation of public goods to a set of N agents over a sequence of T rounds and focus on improving their performance using predictions. In the basic model, a public good arrives in each round, and every agent reveals their value for it upon arrival. The algorithm must irrevocably decide the investment in this good without exceeding a total budget of B across all rounds. The algorithm can utilize (potentially noisy) predictions of each agent’s total value for all remaining goods. The algorithm's performance is measured using a proportional fairness objective, which informally demands that every group of agents be rewarded proportional to its size and the cohesiveness of its preferences. We show that no algorithm can achieve better than Θ(T/B) proportional fairness without predictions. With reasonably accurate predictions, the situation improves significantly, and Θ(log(T/B)) proportional fairness is achieved. We also extend our results to a general setting wherein a batch of L public goods arrive in each round and O(log(min(N,L)T/B)) proportional fairness is achieved. Our exact bounds are parameterized as a function of the prediction error, with performance degrading gracefully with increasing errors.
more »
« less
Proportionally Fair Online Allocation of Public Goods with Predictions
We design online algorithms for the fair allocation of public goods to a set of N agents over a sequence of T rounds and focus on improving their performance using predictions. In the basic model, a public good arrives in each round, and every agent reveals their value for it upon arrival. The algorithm must irrevocably decide the investment in this good without exceeding a total budget of B across all rounds. The algorithm can utilize (potentially noisy) predictions of each agent’s total value for all remaining goods. The algorithm’s performance is measured using a proportional fairness objective, which informally demands that every group of agents be rewarded proportional to its size and the cohesiveness of its preferences. We show that no algorithm can achieve better than Θ(T/B) proportional fairness without predictions. With reasonably accurate predictions, the situation improves significantly, and Θ(log(T/B)) proportional fairness is achieved. We also extend our results to a general setting wherein a batch of L public goods arrive in each round and O(log(min(N,L) ·T/B)) proportional fairness is achieved. Our exact bounds are parameterized as a function of the prediction error, with performance degrading gracefully with increasing errors.
more »
« less
- Award ID(s):
- 2047907
- PAR ID:
- 10491124
- Publisher / Repository:
- 32nd International Joint Conference on Artificial Intelligence
- Date Published:
- Journal Name:
- 32nd International Joint Conference on Artificial Intelligence
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We consider the problem where N agents collaboratively interact with an instance of a stochastic K arm bandit problem for K N. The agents aim to simultaneously minimize the cumulative regret over all the agents for a total of T time steps, the number of communication rounds, and the number of bits in each communication round. We present Limited Communication Collaboration - Upper Confidence Bound (LCC-UCB), a doubling-epoch based algorithm where each agent communicates only after the end of the epoch and shares the index of the best arm it knows. With our algorithm, LCC-UCB, each agent enjoys a regret of O√(K/N + N)T, communicates for O(log T) steps and broadcasts O(log K) bits in each communication step. We extend the work to sparse graphs with maximum degree KG and diameter D to propose LCC-UCB-GRAPH which enjoys a regret bound of O√(D(K/N + KG)DT). Finally, we empirically show that the LCC-UCB and the LCC-UCB-GRAPH algorithms perform well and outperform strategies that communicate through a central node.more » « less
-
In the problem of online portfolio selection as formulated by Cover (1991), the trader repeatedly distributes her capital over d assets in each of T>1 rounds, with the goal of maximizing the total return. Cover proposed an algorithm, termed Universal Portfolios, that performs nearly as well as the best (in hindsight) static assignment of a portfolio, with an O(dlog(T)) regret in terms of the logarithmic return. Without imposing any restrictions on the market this guarantee is known to be worst-case optimal, and no other algorithm attaining it has been discovered so far. Unfortunately, Cover's algorithm crucially relies on computing certain d-dimensional integral which must be approximated in any implementation; this results in a prohibitive O(d^4(T+d)^14) per-round runtime for the fastest known implementation due to Kalai and Vempala (2002). We propose an algorithm for online portfolio selection that admits essentially the same regret guarantee as Universal Portfolios -- up to a constant factor and replacement of log(T) with log(T+d) -- yet has a drastically reduced runtime of O(d^(T+d)) per round. The selected portfolio minimizes the current logarithmic loss regularized by the log-determinant of its Hessian -- equivalently, the hybrid logarithmic-volumetric barrier of the polytope specified by the asset return vectors. As such, our work reveals surprising connections of online portfolio selection with two classical topics in optimization theory: cutting-plane and interior-point algorithms.more » « less
-
This paper studies online resource allocation with replenishable budgets, where budgets can be replenished on top of the initial budget and an agent sequentially chooses online allocation decisions without violating the available budget constraint at each round. We propose a novel online algorithm, called OACP (Opportunistic Allocation with Conservative Pricing), that conservatively adjusts dual variables while opportunistically utilizing available resources. OACP achieves a bounded asymptotic competitive ratio in adversarial settings as the number of decision rounds T gets large. Importantly, the asymptotic competitive ratio of OACP is optimal in the absence of additional assumptions on budget replenishment. To further improve the competitive ratio, we make a mild assumption that there is budget replenishment every T* ≥ 1 decision rounds and propose OACP+ to dynamically adjust the total budget assignment for online allocation. Next, we move beyond the worst-case and propose LA-OACP (Learning-Augmented OACP/OACP+), a novel learning-augmented algorithm for online allocation with replenishable budgets. We prove that LA-OACP can improve the average utility compared to OACP/OACP+ when the ML predictor is properly trained, while still offering worst-case utility guarantees when the ML predictions are arbitrarily wrong. Finally, we run simulation studies of sustainable AI inference powered by renewables, validating our analysis and demonstrating the empirical benefits of LA-OACP.more » « less
-
This paper studies the feasibility of reaching consensus in an anonymous dynamic network. In our model, n anonymous nodes proceed in synchronous rounds. We adopt a hybrid fault model in which up to f nodes may suffer crash or Byzantine faults, and the dynamic message adversary chooses a communication graph for each round. We introduce a stability property of the dynamic network – (T,D)-dynaDegree for T ≥ 1 and n−1 ≥ D ≥ 1 – which requires that for every T consecutive rounds, any fault-free node must have incoming directed links from at least D distinct neighbors. These links might occur in different rounds during a T -round interval. (1, n−1)-dynaDegree means that the graph is a complete graph in every round. (1, 1)-dynaDegree means that each node has at least one incoming neighbor in every round, but the set of incoming neighbor(s) at each node may change arbitrarily between rounds. We show that exact consensus is impossible even with (1, n − 2)-dynaDegree. For an arbitrary T , we show that for crash-tolerant approximate consensus, (T , ⌊n/2⌋)-dynaDegree and n > 2f are together necessary and sufficient, whereas for Byzantine approximate consensus, (T , ⌊(n + 3f )/2⌋)- dynaDegree and n > 5f are together necessary and sufficient.more » « less