skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Shah, S A"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Perret, B (Ed.)
  2. https://aera24-aera.ipostersessions.com/?s=BD-08-2E-A2-1B-EE-23-2E-10-77-1E-F4-32-6C-83-29 
    more » « less
  3. Spectral line shapes provide a window into the local environment coupled to a quantum transition in the condensed phase. In this paper, we build upon a stochastic model to account for non-stationary background processes produced by broad-band pulsed laser stimulation, as distinguished from those for stationary phonon bath. In particular, we consider the contribution of pair-fluctuations arising from the full bosonic many-body Hamiltonian within a mean-field approximation, treating the coupling to the system as a stochastic noise term. Using the Itô transformation, we consider two limiting cases for our model, which lead to a connection between the observed spectral fluctuations and the spectral density of the environment. In the first case, we consider a Brownian environment and show that this produces spectral dynamics that relax to form dressed excitonic states and recover an Anderson–Kubo-like form for the spectral correlations. In the second case, we assume that the spectrum is Anderson–Kubo like and invert to determine the corresponding background. Using the Jensen inequality, we obtain an upper limit for the spectral density for the background. The results presented here provide the technical tools for applying the stochastic model to a broad range of problems. 
    more » « less