skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Shah, Vihan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Meka, Raghu (Ed.)
    We consider the problem of finding a minimum cut of a weighted graph presented as a single-pass stream. While graph sparsification in streams has been intensively studied, the specific application of finding minimum cuts in streams is less well-studied. To this end, we show upper and lower bounds on minimum cut problems in insertion-only streams for a variety of settings, including for both randomized and deterministic algorithms, for both arbitrary and random order streams, and for both approximate and exact algorithms. One of our main results is an Õ(n/ε) space algorithm with fast update time for approximating a spectral cut query with high probability on a stream given in an arbitrary order. Our result breaks the Ω(n/ε²) space lower bound required of a sparsifier that approximates all cuts simultaneously. Using this result, we provide streaming algorithms with near optimal space of Õ(n/ε) for minimum cut and approximate all-pairs effective resistances, with matching space lower-bounds. The amortized update time of our algorithms is Õ(1), provided that the number of edges in the input graph is at least (n/ε²)^{1+o(1)}. We also give a generic way of incorporating sketching into a recursive contraction algorithm to improve the post-processing time of our algorithms. In addition to these results, we give a random-order streaming algorithm that computes the exact minimum cut on a simple, unweighted graph using Õ(n) space. Finally, we give an Ω(n/ε²) space lower bound for deterministic minimum cut algorithms which matches the best-known upper bound up to polylogarithmic factors. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026
  2. Guruswami, Venkatesan (Ed.)
    We present novel lower bounds in the Merlin-Arthur (MA) communication model and the related annotated streaming or stream verification model. The MA communication model extends the classical communication model by introducing an all-powerful but untrusted player, Merlin, who knows the inputs of the usual players, Alice and Bob, and attempts to convince them about the output. We focus on the online MA (OMA) model where Alice and Merlin each send a single message to Bob, who needs to catch Merlin if he is dishonest and announce the correct output otherwise. Most known functions have OMA protocols with total communication significantly smaller than what would be needed without Merlin. In this work, we introduce the notion of non-trivial-OMA complexity of a function. This is the minimum total communication required when we restrict ourselves to only non-trivial protocols where Alice sends Bob fewer bits than what she would have sent without Merlin. We exhibit the first explicit functions that have this complexity superlinear - even exponential - in their classical one-way complexity: this means the trivial protocol, where Merlin communicates nothing and Alice and Bob compute the function on their own, is exponentially better than any non-trivial protocol in terms of total communication. These OMA lower bounds also translate to the annotated streaming model, the MA analogue of single-pass data streaming. We show large separations between the classical streaming complexity and the non-trivial annotated streaming complexity (for the analogous notion in this setting) of fundamental problems such as counting distinct items, as well as of graph problems such as connectivity and k-connectivity in a certain edge update model called the support graph turnstile model that we introduce here. 
    more » « less