In this work, we introduce an online model for communication complexity. Analogous to how online algorithms receive their input piece-by-piece, our model presents one of the players, Bob, his input piece-by-piece, and has the players Alice and Bob cooperate to compute a result each time before the next piece is revealed to Bob. This model has a closer and more natural correspondence to dynamic data structures than classic communication models do, and hence presents a new perspective on data structures. We first present a tight lower bound for the online set intersection problem in the online communication model, demonstrating a general approach for proving online communication lower bounds. The online communication model prevents a batching trick that classic communication complexity allows, and yields a stronger lower bound. We then apply the online communication model to prove data structure lower bounds for two dynamic data structure problems: the Group Range problem and the Dynamic Connectivity problem for forests. Both of the problems admit a worst case O(logn)-time data structure. Using online communication complexity, we prove a tight cell-probe lower bound for each: spending o(logn) (even amortized) time per operation results in at best an exp(−δ2 n) probability of correctly answering a (1/2+δ)-fraction of the n queries.
more »
« less
New Lower Bounds in Merlin-Arthur Communication and Graph Streaming Verification
We present novel lower bounds in the Merlin-Arthur (MA) communication model and the related annotated streaming or stream verification model. The MA communication model extends the classical communication model by introducing an all-powerful but untrusted player, Merlin, who knows the inputs of the usual players, Alice and Bob, and attempts to convince them about the output. We focus on the online MA (OMA) model where Alice and Merlin each send a single message to Bob, who needs to catch Merlin if he is dishonest and announce the correct output otherwise. Most known functions have OMA protocols with total communication significantly smaller than what would be needed without Merlin. In this work, we introduce the notion of non-trivial-OMA complexity of a function. This is the minimum total communication required when we restrict ourselves to only non-trivial protocols where Alice sends Bob fewer bits than what she would have sent without Merlin. We exhibit the first explicit functions that have this complexity superlinear - even exponential - in their classical one-way complexity: this means the trivial protocol, where Merlin communicates nothing and Alice and Bob compute the function on their own, is exponentially better than any non-trivial protocol in terms of total communication. These OMA lower bounds also translate to the annotated streaming model, the MA analogue of single-pass data streaming. We show large separations between the classical streaming complexity and the non-trivial annotated streaming complexity (for the analogous notion in this setting) of fundamental problems such as counting distinct items, as well as of graph problems such as connectivity and k-connectivity in a certain edge update model called the support graph turnstile model that we introduce here.
more »
« less
- Award ID(s):
- 1918989
- PAR ID:
- 10545357
- Editor(s):
- Guruswami, Venkatesan
- Publisher / Repository:
- Schloss Dagstuhl – Leibniz-Zentrum für Informatik
- Date Published:
- Volume:
- 287
- ISSN:
- 1868-8969
- ISBN:
- 978-3-95977-309-6
- Page Range / eLocation ID:
- 287-287
- Subject(s) / Keyword(s):
- Graph Algorithms Streaming Communication Complexity Stream Verification Merlin-Arthur Communication Lower Bounds Theory of computation → Graph algorithms analysis Theory of computation → Streaming, sublinear and near linear time algorithms Theory of computation → Streaming models
- Format(s):
- Medium: X Size: 22 pages; 854304 bytes Other: application/pdf
- Size(s):
- 22 pages 854304 bytes
- Right(s):
- Creative Commons Attribution 4.0 International license; info:eu-repo/semantics/openAccess
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
In a recent work (Ghazi et al., SODA 2016), the authors with Komargodski and Kothari initiated the study of communication with contextual uncertainty, a setup aiming to understand how efficient communication is possible when the communicating parties imperfectly share a huge context. In this setting, Alice is given a function f and an input string x, and Bob is given a function g and an input string y. The pair (x,y) comes from a known distribution mu and f and g are guaranteed to be close under this distribution. Alice and Bob wish to compute g(x,y) with high probability. The lack of agreement between Alice and Bob on the function that is being computed captures the uncertainty in the context. The previous work showed that any problem with one-way communication complexity k in the standard model (i.e., without uncertainty, in other words, under the promise that f=g) has public-coin communication at most O(k(1+I)) bits in the uncertain case, where I is the mutual information between x and y. Moreover, a lower bound of Omega(sqrt{I}) bits on the public-coin uncertain communication was also shown. However, an important question that was left open is related to the power that public randomness brings to uncertain communication. Can Alice and Bob achieve efficient communication amid uncertainty without using public randomness? And how powerful are public-coin protocols in overcoming uncertainty? Motivated by these two questions: - We prove the first separation between private-coin uncertain communication and public-coin uncertain communication. Namely, we exhibit a function class for which the communication in the standard model and the public-coin uncertain communication are O(1) while the private-coin uncertain communication is a growing function of n (the length of the inputs). This lower bound (proved with respect to the uniform distribution) is in sharp contrast with the case of public-coin uncertain communication which was shown by the previous work to be within a constant factor from the certain communication. This lower bound also implies the first separation between public-coin uncertain communication and deterministic uncertain communication. Interestingly, we also show that if Alice and Bob imperfectly share a sequence of random bits (a setup weaker than public randomness), then achieving a constant blow-up in communication is still possible. - We improve the lower-bound of the previous work on public-coin uncertain communication. Namely, we exhibit a function class and a distribution (with mutual information I approx n) for which the one-way certain communication is k bits but the one-way public-coin uncertain communication is at least Omega(sqrt{k}*sqrt{I}) bits. Our proofs introduce new problems in the standard communication complexity model and prove lower bounds for these problems. Both the problems and the lower bound techniques may be of general interest.more » « less
-
We consider the following communication problem: Alice and Bob each have some valuation functions $$v_1(\cdot)$$ and $$v_2(\cdot)$$ over subsets of $$m$$ items, and their goal is to partition the items into $$S, \bar{S}$$ in a way that maximizes the welfare, $$v_1(S) + v_2(\bar{S})$$. We study both the allocation problem, which asks for a welfare-maximizing partition and the decision problem, which asks whether or not there exists a partition guaranteeing certain welfare, for binary XOS valuations. For interactive protocols with $poly(m)$ communication, a tight 3/4-approximation is known for both [Fei06,DS06]. For interactive protocols, the allocation problem is provably harder than the decision problem: any solution to the allocation problem implies a solution to the decision problem with one additional round and $$\log m$$ additional bits of communication via a trivial reduction. Surprisingly, the allocation problem is provably easier for simultaneous protocols. Specifically, we show: 1) There exists a simultaneous, randomized protocol with polynomial communication that selects a partition whose expected welfare is at least $3/4$ of the optimum. This matches the guarantee of the best interactive, randomized protocol with polynomial communication. 2) For all $$\varepsilon > 0$$, any simultaneous, randomized protocol that decides whether the welfare of the optimal partition is $$\geq 1$$ or $$\leq 3/4 - 1/108+\varepsilon$$ correctly with probability $> 1/2 + 1/ poly(m)$ requires exponential communication. This provides a separation between the attainable approximation guarantees via interactive ($3/4$) versus simultaneous ($$\leq 3/4-1/108$$) protocols with polynomial communication. In other words, this trivial reduction from decision to allocation problems provably requires the extra round of communication. We further discuss the implications of our results for the design of truthful combinatorial auctions in general, and extensions to general XOS valuations. In particular, our protocol for the allocation problem implies a new style of truthful mechanisms.more » « less
-
Tauman Kalai, Yael (Ed.)We introduce and study the communication complexity of computing the inner product of two vectors, where the input is restricted w.r.t. a norm N on the space ℝⁿ. Here, Alice and Bob hold two vectors v,u such that ‖v‖_N ≤ 1 and ‖u‖_{N^*} ≤ 1, where N^* is the dual norm. The goal is to compute their inner product ⟨v,u⟩ up to an ε additive term. The problem is denoted by IP_N, and generalizes important previously studied problems, such as: (1) Computing the expectation 𝔼_{x∼𝒟}[f(x)] when Alice holds 𝒟 and Bob holds f is equivalent to IP_{𝓁₁}. (2) Computing v^TAv where Alice has a symmetric matrix with bounded operator norm (denoted S_∞) and Bob has a vector v where ‖v‖₂ = 1. This problem is complete for quantum communication complexity and is equivalent to IP_{S_∞}. We systematically study IP_N, showing the following results, near tight in most cases: 1) For any symmetric norm N, given ‖v‖_N ≤ 1 and ‖u‖_{N^*} ≤ 1 there is a randomized protocol using 𝒪̃(ε^{-6} log n) bits of communication that returns a value in ⟨u,v⟩±ε with probability 2/3 - we will denote this by ℛ_{ε,1/3}(IP_N) ≤ 𝒪̃(ε^{-6} log n). In a special case where N = 𝓁_p and N^* = 𝓁_q for p^{-1} + q^{-1} = 1, we obtain an improved bound ℛ_{ε,1/3}(IP_{𝓁_p}) ≤ 𝒪(ε^{-2} log n), nearly matching the lower bound ℛ_{ε, 1/3}(IP_{𝓁_p}) ≥ Ω(min(n, ε^{-2})). 2) One way communication complexity ℛ^{→}_{ε,δ}(IP_{𝓁_p}) ≤ 𝒪(ε^{-max(2,p)}⋅ log n/ε), and a nearly matching lower bound ℛ^{→}_{ε, 1/3}(IP_{𝓁_p}) ≥ Ω(ε^{-max(2,p)}) for ε^{-max(2,p)} ≪ n. 3) One way communication complexity ℛ^{→}_{ε,δ}(N) for a symmetric norm N is governed by the distortion of the embedding 𝓁_∞^k into N. Specifically, while a small distortion embedding easily implies a lower bound Ω(k), we show that, conversely, non-existence of such an embedding implies protocol with communication k^𝒪(log log k) log² n. 4) For arbitrary origin symmetric convex polytope P, we show ℛ_{ε,1/3}(IP_{N}) ≤ 𝒪(ε^{-2} log xc(P)), where N is the unique norm for which P is a unit ball, and xc(P) is the extension complexity of P (i.e. the smallest number of inequalities describing some polytope P' s.t. P is projection of P').more » « less
-
Quantum cryptography provides absolute security against an all-powerful eavesdropper (Eve). However, in practice Eve's resources may be restricted to a limited aperture size so that she cannot collect all paraxial light without alerting the communicating parties (Alice and Bob). In this paper we study a quantum wiretap channel in which the connection from Alice to Eve is lossy, so that some of the transmitted quantum information is inaccessible to both Bob and Eve. For a pureloss channel under such restricted eavesdropping, we show that the key rates achievable with a two-mode squeezed vacuum state, heterodyne detection, and public classical communication assistance-given by the Hashing inequality-can exceed the secret key distillation capacity of the channel against an omnipotent eavesdropper. We report upper bounds on the key rates under the restricted eavesdropping model based on the relative entropy of entanglement, which closely match the achievable rates. For the pure-loss channel under restricted eavesdropping, we compare the secret-key rates of continuous-variable (CV) quantum key distribution (QKD) based on Gaussian-modulated coherent states and heterodyne detection with the discrete variable (DV) decoystate BB84 QKD protocol based on polarization qubits encoded in weak coherent laser pulses.more » « less