skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Shaham, Sina"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Machine learning (ML) is playing an increasing role in decision-making tasks that directly affect individuals, e.g., loan approvals, or job applicant screening. Significant concerns arise that, without special provisions, individuals from under-privileged backgrounds may not get equitable access to services and opportunities. Existing research studies {\em fairness} with respect to protected attributes such as gender, race or income, but the impact of location data on fairness has been largely overlooked. With the widespread adoption of mobile apps, geospatial attributes are increasingly used in ML, and their potential to introduce unfair bias is significant, given their high correlation with protected attributes. We propose techniques to mitigate location bias in machine learning. Specifically, we consider the issue of miscalibration when dealing with geospatial attributes. We focus on {\em spatial group fairness} and we propose a spatial indexing algorithm that accounts for fairness. Our KD-tree inspired approach significantly improves fairness while maintaining high learning accuracy, as shown by extensive experimental results on real data. 
    more » « less
  2. {} 
    more » « less
  3. Abstract Location-based alerts have gained increasing popularity in recent years, whether in the context of healthcare (e.g., COVID-19 contact tracing), marketing (e.g., location-based advertising), or public safety. However, serious privacy concerns arise when location data are used in clear in the process. Several solutions employ searchable encryption (SE) to achievesecurealerts directly on encrypted locations. While doing so preserves privacy, the performance overhead incurred is high. We focus on a prominent SE technique in the public-key setting–hidden vector encryption, and propose a graph embedding technique to encode location data in a way that significantly boosts the performance of processing on ciphertexts. We show that the optimal encoding is NP-hard, and we provide three heuristics that obtain significant performance gains: gray optimizer, multi-seed gray optimizer and scaled gray optimizer. Furthermore, we investigate the more challenging case of dynamic alert zones, where the area of interest changes over time. Our extensive experimental evaluation shows that our solutions can significantly improve computational overhead compared to existing baselines. 
    more » « less
  4. Fairness in data-driven decision-making studies scenarios where individuals from certain population segments may be unfairly treated when being considered for loan or job applications, access to public resources, or other types of services. In location-based applications, decisions are based on individual whereabouts, which often correlate with sensitive attributes such as race, income, and education. While fairness has received significant attention recently, e.g., in machine learning, there is little focus on achieving fairness when dealing with location data. Due to their characteristics and specific type of processing algorithms, location data pose important fairness challenges. We introduce the concept of spatial data fairness to address the specific challenges of location data and spatial queries. We devise a novel building block to achieve fairness in the form of fair polynomials. Next, we propose two mechanisms based on fair polynomials that achieve individual spatial fairness, corresponding to two common location-based decision-making types: distance-based and zone-based. Extensive experimental results on real data show that the proposed mechanisms achieve spatial fairness without sacrificing utility. 
    more » « less
  5. Mobile apps that use location data are pervasive, spanning domains such as transportation, urban planning and healthcare. Important use cases for location data rely on statistical queries, e.g., identifying hotspots where users work and travel. Such queries can be answered efficiently by building histograms. However, precise histograms can expose sensitive details about individual users. Differential privacy (DP) is a mature and widely-adopted protection model, but most approaches for DP-compliant histograms work in a data-independent fashion, leading to poor accuracy. The few proposed data-dependent techniques attempt to adjust histogram partitions based on dataset characteristics, but they do not perform well due to the addition of noise required to achieve DP. In addition, they use ad-hoc criteria to decide the depth of the partitioning. We identifydensity homogeneityas a main factor driving the accuracy of DP-compliant histograms, and we build a data structure that splits the space such that data density is homogeneous within each resulting partition. We propose a self-tuning approach to decide the depth of the partitioning structure that optimizes the use of privacy budget. Furthermore, we provide an optimization that scales the proposed split approach to large datasets while maintaining accuracy. We show through extensive experiments on large-scale real-world data that the proposed approach achieves superior accuracy compared to existing approaches. 
    more » « less
  6. null (Ed.)
  7. Most online mobile services make use of location data to improve customer experience. Mobile users can locate points of interest near them, or can receive recommendations tailored to their whereabouts. However, serious privacy concerns arise when location data is revealed in clear to service providers. Several solutions employ searchable encryption (SE) to evaluate spatial predicates directly on location ciphertexts. While doing so preserves privacy, the performance overhead incurred is high. We focus on a prominent SE technique in the public-key setting -- Hidden Vector Encryption (HVE), and propose a graph embedding technique to encode location data in a way that significantly boost the performance of processing on ciphertexts. We show that finding the optimal encoding is NP-hard, and provide several heuristics that are fast and obtain significant performance gains. Our extensive experimental evaluation on real-life datasets shows that our solutions can improve computational overhead by a factor of two compared to the baseline. 
    more » « less