skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00PM ET on Friday, December 15 until 2:00 AM ET on Saturday, December 16 due to maintenance. We apologize for the inconvenience.

Search for: All records

Creators/Authors contains: "Shaikh, Nabil"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. null (Ed.)
    The objective of this study was to investigate the application of manganese oxide [MnO x(s) ] and granular activated carbon (GAC) media for the removal of caffeine and acetaminophen from water. Organic contaminants of emerging concern represent a developing issue due to their effects on human health and the environment. Manganese oxides are effective for water treatment because of their ability to mediate adsorption and oxidation–reduction reactions for many organic and inorganic constituents. Laboratory scale column experiments were performed using different combinations of commercial MnO x(s) and GAC for assessing the removal of caffeine and acetaminophen, and the subsequent release of soluble Mn due to the reductive dissolution of MnO x(s) . The removal of acetaminophen was detected for all media combinations investigated. However, the removal of caffeine by adsorption only occurred in columns containing GAC media. There was no removal of caffeine in columns containing only MnO x(s) media. Manganese release occurred in columns containing MnO x(s) media, but concentrations were below the secondary drinking water standard of 50 μg L −1 set by the US Environmental Protection Agency. Soluble Mn released from a first process by MnO x(s) media column was removed through adsorption into the GAC media used in a second process. The results of this investigation are relevant for implementation of MnO x(s) and GAC media combinations as an effective treatment process to remove organic contaminants from water. 
    more » « less
  3. Uranium (U) contamination of drinking water often affects communities with limited resources, presenting unique technology challenges for U 6+ treatment. Here, we develop a suite of chemically functionalized polymer (polyacrylonitrile; PAN) nanofibers for low pressure reactive filtration applications for U 6+ removal. Binding agents with either nitrogen-containing or phosphorous-based ( e.g. , phosphonic acid) functionalities were blended (at 1–3 wt%) into PAN sol gels used for electrospinning, yielding functionalized nanofiber mats. For comparison, we also functionalized PAN nanofibers with amidoxime (AO) moieties, a group well-recognized for its specificity in U 6+ uptake. For optimal N-based (Aliquat® 336 or Aq) and P-containing [hexadecylphosphonic acid (HPDA) and bis(2-ethylhexyl)phosphate (HDEHP)] binding agents, we then explored their use for U 6+ removal across a range of pH values (pH 2–7), U 6+ concentrations (up to 10 μM), and in flow through systems simulating point of use (POU) water treatment. As expected from the use of quaternary ammonium groups in ion exchange, Aq-containing materials appear to sequester U 6+ by electrostatic interactions; while uptake by these materials is limited, it is greatest at circumneutral pH where positively charged N groups bind negatively charged U 6+ complexes. In contrast, HDPA and HDEHP perform best at acidic pH representative of mine drainage, where surface complexation of the uranyl cation likely drives uptake. Complexation by AO exhibited the best performance across all pH values, although U 6+ uptake via surface precipitation may also occur near circumneutral pH values and at high (10 μM) dissolved U 6+ concentrations. In simulated POU treatment studies using a dead-end filtration system, we observed U removal in AO-PAN systems that is insensitive to common co-solutes in groundwater ( e.g. , hardness and alkalinity). While more research is needed, our results suggest that only 80 g (about 0.2 lbs.) of AO-PAN filter material would be needed to treat an individual's water supply (contaminated at ten-times the U.S. EPA maximum contaminant level for U) for one year. 
    more » « less