skip to main content


Search for: All records

Creators/Authors contains: "Shamsudduha, Mohammad"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Groundwater resources are vital to ecosystems and livelihoods. Excessive groundwater withdrawals can cause groundwater levels to decline1–10, resulting in seawater intrusion11, land subsidence12,13, streamflow depletion14–16and wells running dry17. However, the global pace and prevalence of local groundwater declines are poorly constrained, because in situ groundwater levels have not been synthesized at the global scale. Here we analyse in situ groundwater-level trends for 170,000 monitoring wells and 1,693 aquifer systems in countries that encompass approximately 75% of global groundwater withdrawals18. We show that rapid groundwater-level declines (>0.5 m year−1) are widespread in the twenty-first century, especially in dry regions with extensive croplands. Critically, we also show that groundwater-level declines have accelerated over the past four decades in 30% of the world’s regional aquifers. This widespread acceleration in groundwater-level deepening highlights an urgent need for more effective measures to address groundwater depletion. Our analysis also reveals specific cases in which depletion trends have reversed following policy changes, managed aquifer recharge and surface-water diversions, demonstrating the potential for depleted aquifer systems to recover.

     
    more » « less
  2. Zhang, Kai (Ed.)
    Realistic representation of hydrological drought events is increasingly important in world facing decreased freshwater availability. Index-based drought monitoring systems are often adopted to represent the evolution and distribution of hydrological droughts, which mainly rely on hydrological model simulations to compute these indices. Recent studies, however, indicate that model derived water storage estimates might have difficulties in adequately representing reality. Here, a novel Markov Chain Monte Carlo - Data Assimilation (MCMC-DA) approach is implemented to merge global Terrestrial Water Storage (TWS) changes from the Gravity Recovery And Climate Experiment (GRACE) and its Follow On mission (GRACE-FO) with the water storage estimations derived from the W3RA water balance model. The modified MCMC-DA derived summation of deep rooted soil and groundwater storage estimates is then used to compute 0.5∘ standardized groundwater drought indices globally to show the impact of GRACE/GRACE-FO DA on a global index-based hydrological drought monitoring system. Our numerical assessment covers the period of 2003–2021, and shows that integrating GRACE/GRACE-FO data modifies the seasonality and inter-annual trends of water storage estimations. Considerable increases in the length and severity of extreme droughts are found in basins that exhibited multiyear water storage fluctuations and those affected by climate teleconnections. 
    more » « less