GRACE satellite data are widely used to estimate groundwater storage (GWS) changes in aquifers globally; however, comparisons with GW monitoring and modeling data are limited. Here we compared GWS changes from GRACE over 15 yr (2002–2017) in 14 major U.S. aquifers with groundwater‐level (GWL) monitoring data in ~23,000 wells and with regional and global hydrologic and land surface models. Results show declining GWS trends from GRACE data in the six southwestern and south‐central U.S. aquifers, totaling −90 km3over 15 yr, related to long‐term (5–15 yr) droughts, and exceeding Lake Mead volume by ~2.5×. GWS trends in most remaining aquifers were stable or slightly rising. GRACE‐derived GWS changes agree with GWL monitoring data in most aquifers (correlation coefficients,
This content will become publicly available on February 1, 2025
- Award ID(s):
- 2044704
- PAR ID:
- 10492647
- Editor(s):
- Zhang, Kai
- Publisher / Repository:
- Science of the Total Environment
- Date Published:
- Journal Name:
- Science of The Total Environment
- Volume:
- 912
- Issue:
- C
- ISSN:
- 0048-9697
- Page Range / eLocation ID:
- 169476
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract R = 0.52–0.95), showing that GRACE satellites capture groundwater (GW) dynamics. Regional GW models (eight models) generally show similar or greater GWS trends than those from GRACE. Large discrepancies in the Mississippi Embayment aquifer, with modeled GWS decline approximately four times that of GRACE, may reflect uncertainties in model storage parameters, stream capture, pumpage, and/or recharge rates. Global hydrologic models (2003–2014), which include GW pumping, generally overestimate GRACE GWS depletion (total: approximately −172 to −186 km3) in heavily exploited aquifers in southwestern and south‐central U.S. by ~2.4× (GRACE: −74 km3), underscoring needed modeling improvements relative to anthropogenic impacts. Global land surface models tend to track GRACE GWS dynamics better than global hydrologic models. Intercomparing remote sensing, monitoring, and modeling data underscores the importance of considering all data sources to constrain GWS uncertainties. -
Abstract Significant imbalances in terrestrial water storage (TWS) and severe drought have been observed around the world as a consequence of climate changes. Improving our ability to monitor TWS and drought is critical for water‐resource management and water‐deficit estimation. We use continuous seismic ambient noise to monitor temporal evolution of near‐surface seismic velocity,
dv /v , in central Oklahoma from 2013 to 2022. The deriveddv /v is found to be negatively correlated with gravitational measurements and groundwater depths, showing the impact of groundwater storage on seismic velocities. The hydrological effects involving droughts and recharge of groundwater occur on a multi‐year time scale and dominate the overall derived velocity changes. The thermoelastic response to atmospheric temperature variations occurs primarily on a yearly timescale and dominates the superposed seasonal velocity changes in this study. The occurrences of droughts appear simultaneously with local peaks ofdv /v , demonstrating the sensitivity of near‐surface seismic velocities to droughts. -
Abstract Global Navigation Satellite System (GNSS) vertical displacements measuring the elastic response of Earth's crust to changes in hydrologic mass have been used to produce terrestrial water storage change (∆TWS) estimates for studying both annual ∆TWS as well as multi‐year trends. However, these estimates require a high observation station density and minimal contamination by nonhydrologic deformation sources. The Gravity Recovery and Climate Experiment (GRACE) is another satellite‐based measurement system that can be used to measure regional TWS fluctuations. The satellites provide highly accurate ∆TWS estimates with global coverage but have a low spatial resolution of ∼400 km. Here, we put forward the mathematical framework for a joint inversion of GNSS vertical displacement time series with GRACE ∆TWS to produce more accurate spatiotemporal maps of ∆TWS, accounting for the observation errors, data gaps, and nonhydrologic signals. We aim to utilize the regional sensitivity to ∆TWS provided by GRACE mascon solutions with higher spatial resolution provided by GNSS observations. Our approach utilizes a continuous wavelet transform to decompose signals into their building blocks and separately invert for long‐term and short‐term mass variations. This allows us to preserve trends, annual, interannual, and multi‐year changes in TWS that were previously challenging to capture by satellite‐based measurement systems or hydrological models, alone. We focus our study in California, USA, which has a dense GNSS network and where recurrent, intense droughts put pressure on freshwater supplies. We highlight the advantages of our joint inversion results for a tectonically active study region by comparing them against inversion results that use only GNSS vertical deformation as well as with maps of ∆TWS from hydrological models and other GRACE solutions. We find that our joint inversion framework results in a solution that is regionally consistent with the GRACE ∆TWS solutions at different temporal scales but has an increased spatial resolution that allows us to differentiate between regions of high and low mass change better than using GRACE alone.
-
Abstract. We investigate the interannual and interdecadalhydrological changes in the Amazon River basin and its sub-basins duringthe 1980–2015 period using GRACE satellite data and a physically based, 2 kmgrid continental-scale hydrological model (LEAF-Hydro-Flood) that includes aprognostic groundwater scheme and accounts for the effects of land use–landcover (LULC) change. The analyses focus on the dominant mechanisms thatmodulate terrestrial water storage (TWS) variations and droughts. We findthat (1) the model simulates the basin-averaged TWS variations remarkablywell; however, disagreements are observed in spatial patterns of temporaltrends, especially for the post-2008 period. (2) The 2010s is the driestperiod since 1980, characterized by a major shift in the decadal mean comparedto the 2000s caused by increased drought frequency. (3) Long-term trends in TWSsuggest that the Amazon overall is getting wetter (1.13 mm yr−1), but itssouthern and southeastern sub-basins are undergoing significant negative TWSchanges, caused primarily by intensified LULC changes. (4) Increasingdivergence between dry-season total water deficit and TWS release suggests astrengthening dry season, especially in the southern and southeasternsub-basins. (5) The sub-surface storage regulates the propagation ofmeteorological droughts into hydrological droughts by strongly modulatingTWS release with respect to its storage preceding the drought condition. Oursimulations provide crucial insight into the importance of sub-surface storagein alleviating surface water deficit across Amazon and open pathways forimproving prediction and mitigation of extreme droughts under changingclimate and increasing hydrologic alterations due to human activities (e.g.,LULC change).more » « less
-
Abstract Freshwater stored on land is an extremely vital resource for all the terrestrial life on Earth. But our ability to record the change of land water storage is weak despite its importance. In this study, we attempt to establish a data‐driven model for simulating terrestrial water storage dynamics by relating climate forcings with terrestrial water storage anomalies (TWSAs) from the Gravity Recovery and Climate Experiment (GRACE) satellites. In the case study in Pearl River basin, China, the relationships were learned by using two ensemble learning algorithms, the Random Forest (RF) and eXtreme Gradient Boost (XGB), respectively. The TWSA in the basin was reconstructed back to past decades and compared with the TWSA derived from global land surface models. As a result, the RF and XGB algorithms both perform well and could nicely reproduce the spatial pattern and value range of GRACE observations, outperforming the land surface models. Temporal behaviors of the reconstructed TWSA time series well capture those of both GRACE and land surface models time series. A multiscale GRACE‐based drought index was proposed, and the index matches the Standardized Precipitation‐Evapotranspiration Index time series at different time scales. The case analysis for years of 1963 and 1998 indicates the ability of the reconstructed TWSA for identifying past drought and flood extremes. The importance of different input variables to the TWSA estimation model was quantified, and the precipitation of the prior 2 months is the most important variable for simulating the TWSA of the current month in the model. Results of this study highlight the great potentials for estimating terrestrial water storage dynamics from climate forcing data by using machine learning to achieve comparable results than complex physical models.