Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
In the urban corridor with a mixed traffic composition of connected and automated vehicles (CAVs) alongside human-driven vehicles (HDVs), vehicle operations are intricately influenced by both individual driving behaviors and the presence of signalized intersections. Therefore, the development of a coordinated control strategy that effectively accommodates these dual factors becomes imperative to enhance the overall quality of traffic flow. This study proposes a bi-level structure crafted to decouple the joint effects of the vehicular driving behaviors and corridor signal offsets setting. The objective of this structure is to optimize both the average travel time (ATT) and fuel consumption (AFC). At the lower-level, three types of car-following models while considering driving modes are presented to illustrate the desired driving behaviors of HDVs and CAVs. Moreover, a trigonometry function method combined with a rolling horizon scheme is proposed to generate the eco-trajectory of CAVs in the mixed traffic flow. At the upper-level, a multi-objective optimization model for corridor signal offsets is formulated to minimize ATT and AFC based on the lower-level simulation outputs. Additionally, a revised Non-Dominated Sorting Genetic Algorithm II (NSGA-II) is adopted to identify the set of Pareto-optimal solutions for corridor signal offsets under different CAV penetration rates (CAV PRs). Numerical experiments are conducted within a corridor that encompasses three signalized intersections. The performance of our proposed eco-driving strategy is validated in comparison to the intelligent driver model (IDM) and green light optimal speed advisory (GLOSA) algorithm in single-vehicle simulation. Results show that our proposed strategy yields reduced travel time and fuel consumption to both IDM and GLOSA. Subsequently, the effectiveness of our proposed coordinated control strategy is validated across various CAV PRs. Results indicated that the optimal AFC can be reduced by 4.1%–32.2% with CAV PRs varying from 0.2 to 1, and the optimal ATT can be saved by 2.3% maximum. Furthermore, sensitivity analysis is conducted to evaluate the impact of CAV PRs and V/C ratios on the optimal ATT and AFC.more » « lessFree, publicly-accessible full text available February 1, 2025
-
Exclusive bus lane strategy is widely adopted in many cities to improve bus operation effciency and reliability. With the development of connected vehicle technologies, the dynamic bus lane (DBL) strategy was proposed, with allowing general vehicles to share use of the bus lane to improve traffc effciency in general purpose lanes (GPLs). Previous studies have rarely considered the eco-driving strategy of connected and automated vehicles/buses (CAVs/CABs) in GPLs under the mixed traffc conditions, and how to ensure bus priority with DBL control. In this study, a novel DBL control strategy was developed under the partially connected vehicle environment. A trajectory planning method while considering the joint effects of bus stop and signal phase for CAB was adopted, an eco-driving strategy for CAVs in GPL was proposed using a trigonometry trajectory planning method. And a novel DBL control method was established by integrated trajectory planning for both the CAVs and CABs to ensure bus operation priority. Numerical experiments were conducted to evaluate performance of the proposed novel DBL control in terms of travel time and energy consumption of general vehicles at the different levels of CAV market penetration rates (MPRs). Results indicated that about 16%-42% energy savings can be achieved with MPR varying from 20% to 100%, and the travel time can be improved by about 4%-10%. Meanwhile, sensitivity analysis was conducted to quantify the impacts of key parameters, including vehicle target speeds, heterogeneous traffc fow, random arrival interval of cars, position of bus stop, traffc volume in GPLmore » « lessFree, publicly-accessible full text available January 1, 2025