This content will become publicly available on January 1, 2025
- Award ID(s):
- 2152258
- NSF-PAR ID:
- 10510982
- Publisher / Repository:
- IEEE
- Date Published:
- Journal Name:
- IEEE Transactions on Intelligent Transportation Systems
- ISSN:
- 1524-9050
- Page Range / eLocation ID:
- 1 to 16
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
null (Ed.)Recent research has demonstrated the potential benefits of connected, autonomous vehicles (CAVs) to the performance of urban networks. Specifically, several proposals have been made for policies and related technologies that either perform more efficiently when the proportion of CAVs is relatively high or that exclude human driven vehicles (HDVs) altogether. This same body of research has also identified several challenges faced by such networks, especially in the context of shared autonomous vehicles (SAVs). We propose a lane-use policy for networks of exclusively CAVs with the goal of preserving priority within any two-class, arbitrary priority assignment regime. We investigate the merits of such a policy by adopting a simple occupancy based, two-class priority scheme in a network of SAVs. We will demonstrate that by granting and preserving priority for occupied vehicles, average travel times and speeds for passengers are improved with limited degradation in these measures for other, i.e. unoccupied, vehicles. The proposed lane-use policy is developed on realistic physical limitations of the street network and without the need for trajectory reservations.more » « less
-
Preceding vehicles typically dominate the movement of following vehicles in traffic systems, thereby significantly influencing the efficacy of eco-driving control that concentrates on vehicle speed optimization. To potentially mitigate the negative effect of preceding vehicles on eco-driving control at the signalized intersection, this study proposes an overtaking-enabled eco-approach control (OEAC) strategy. It combines driving lane planning and speed optimization for connected and automated vehicles to relax the first-in-first-out queuing policy at the signalized intersection, minimizing the host vehicle’s energy consumption and travel delay. The OEAC adopts a two-stage receding horizon control framework to derive optimal driving trajectories for adapting to dynamic traffic conditions. In the first stage, the driving lane optimization problem is formulated as a Markov decision process and solved using dynamic programming, which takes into account the uncertain disturbance from preceding vehicles. In the second stage, the vehicle’s speed trajectory with the minimal driving cost is optimized rapidly using Pontryagin’s minimum principle to obtain the closed-form analytical optimal solution. Extensive simulations are conducted to evaluate the effectiveness of the OEAC. The results show that the OEAC is excellent in driving cost reduction over constant speed and regular eco-approach and departure strategies in various traffic scenarios, with an average improvement of 20.91% and 5.62%, respectively.more » « less
-
Abstract This article focuses on the development of distributed robust model predictive control (MPC) methods for multiple connected and automated vehicles (CAVs) to ensure their safe operation in the presence of uncertainty. The proposed layered control framework includes reference trajectory generation, distributionally robust obstacle occupancy set computation, distributed state constraint set evaluation, data-driven linear model representation, and robust tube-based MPC design. To enable distributed operation among the CAVs, we present a method, which exploits sampling-based reference trajectory generation and distributed constraint set evaluation methods, that decouples the coupled collision avoidance constraint among the CAVs. This is followed by data-driven linear model representation of the nonlinear system to evaluate the convex equivalent of the nonlinear control problem. Finally, to ensure safe operation in the presence of uncertainty, this article employs a robust tube-based MPC method. For a multiple CAV lane change problem, simulation results show the efficacy of the proposed controller in terms of computational efficiency and the ability to generate safe and smooth CAV trajectories in a distributed fashion.
-
In the urban corridor with a mixed traffic composition of connected and automated vehicles (CAVs) alongside human-driven vehicles (HDVs), vehicle operations are intricately influenced by both individual driving behaviors and the presence of signalized intersections. Therefore, the development of a coordinated control strategy that effectively accommodates these dual factors becomes imperative to enhance the overall quality of traffic flow. This study proposes a bi-level structure crafted to decouple the joint effects of the vehicular driving behaviors and corridor signal offsets setting. The objective of this structure is to optimize both the average travel time (ATT) and fuel consumption (AFC). At the lower-level, three types of car-following models while considering driving modes are presented to illustrate the desired driving behaviors of HDVs and CAVs. Moreover, a trigonometry function method combined with a rolling horizon scheme is proposed to generate the eco-trajectory of CAVs in the mixed traffic flow. At the upper-level, a multi-objective optimization model for corridor signal offsets is formulated to minimize ATT and AFC based on the lower-level simulation outputs. Additionally, a revised Non-Dominated Sorting Genetic Algorithm II (NSGA-II) is adopted to identify the set of Pareto-optimal solutions for corridor signal offsets under different CAV penetration rates (CAV PRs). Numerical experiments are conducted within a corridor that encompasses three signalized intersections. The performance of our proposed eco-driving strategy is validated in comparison to the intelligent driver model (IDM) and green light optimal speed advisory (GLOSA) algorithm in single-vehicle simulation. Results show that our proposed strategy yields reduced travel time and fuel consumption to both IDM and GLOSA. Subsequently, the effectiveness of our proposed coordinated control strategy is validated across various CAV PRs. Results indicated that the optimal AFC can be reduced by 4.1%–32.2% with CAV PRs varying from 0.2 to 1, and the optimal ATT can be saved by 2.3% maximum. Furthermore, sensitivity analysis is conducted to evaluate the impact of CAV PRs and V/C ratios on the optimal ATT and AFC.more » « less
-
Stop-and-go traffic poses significant challenges to the efficiency and safety of traffic operations, and its impacts and working mechanism have attracted much attention. Recent studies have shown that Connected and Automated Vehicles (CAVs) with carefully designed longitudinal control have the potential to dampen the stop-and-go wave based on simulated vehicle trajectories. In this study, Deep Reinforcement Learning (DRL) is adopted to control the longitudinal behavior of CAVs and real-world vehicle trajectory data is utilized to train the DRL controller. It considers a Human-Driven (HD) vehicle tailed by a CAV, which are then followed by a platoon of HD vehicles. Such an experimental design is to test how the CAV can help to dampen the stop-and-go wave generated by the lead HD vehicle and contribute to smoothing the following HD vehicles’ speed profiles. The DRL control is trained using real-world vehicle trajectories, and eventually evaluated using SUMO simulation. The results show that the DRL control decreases the speed oscillation of the CAV by 54% and 8%-28% for those following HD vehicles. Significant fuel consumption savings are also observed. Additionally, the results suggest that CAVs may act as a traffic stabilizer if they choose to behave slightly altruistically.more » « less