skip to main content

Search for: All records

Creators/Authors contains: "Shang, Shun-Li"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available June 1, 2023
  2. It has been observed in both natural and man-made materials that volume sometimes decreases with increasing temperature. Though mechanistic understanding has been gained for some individual materials, a general answer to the question “Why does volume sometimes decrease with the increase of temperature?” remains lacking. Based on the thermodynamic relation that the derivative of volume with respect to temperature, i.e., thermal expansion, is equal to the negative derivative of entropy with respect to pressure, we developed a general theory in terms of multiscale entropy to understand and predict the change of volume as a function of temperature, which is termed as zentropy theory in the present work. It is shown that a phase at high temperatures is a statistical representation of the ground-state stable and multiple nonground-state metastable configurations. It is demonstrated that when the volumes of the nonground-state configurations with high probabilities are smaller than that of the ground-state configuration, the volume of the phase may decrease with the increase of temperature in certain ranges of temperature-pressure combinations, depicting the negative divergency of thermal expansion at the critical point. As examples, positive and negative divergencies of thermal expansion are predicted at the critical points of Ce and Fe3Pt, respectively,more »along with the temperature and pressure ranges for abnormally positive and negative thermal expansions. The authors believe that the zentropy theory is applicable to predict anomalies of other physical properties of phases because the change of entropy drives the responses of a system to external stimuli.« less
    Free, publicly-accessible full text available January 1, 2023
  3. Abstract

    Forming metallurgical phases has a critical impact on the performance of dissimilar materials joints. Here, we shed light on the forming mechanism of equilibrium and non-equilibrium intermetallic compounds (IMCs) in dissimilar aluminum/steel joints with respect to processing history (e.g., the pressure and temperature profiles) and chemical composition, where the knowledge of free energy and atomic diffusion in the Al–Fe system was taken from first-principles phonon calculations and data available in the literature. We found that the metastable and ductile (judged by the presently predicted elastic constants) Al6Fe is a pressure (P) favored IMC observed in processes involving high pressures. The MoSi2-type Al2Fe is brittle and a strongP-favored IMC observed at high pressures. The stable, brittle η-Al5Fe2is the most observed IMC (followed by θ-Al13Fe4) in almost all processes, such as fusion/solid-state welding and additive manufacturing (AM), since η-Al5Fe2is temperature-favored, possessing high thermodynamic driving force of formation and the fastest atomic diffusivity among all Al–Fe IMCs. Notably, the ductile AlFe3, the less ductile AlFe, and most of the other IMCs can be formed during AM, making AM a superior process to achieve desired IMCs in dissimilar materials. In addition, the unknown configurations of Al2Fe and Al5Fe2were also examined by machine learningmore »based datamining together with first-principles verifications and structure predictions. All the IMCs that are notP-favored can be identified using the conventional equilibrium phase diagram and the Scheil-Gulliver non-equilibrium simulations.

    « less
  4. Free, publicly-accessible full text available January 1, 2023
  5. Abstract An unprecedented NiSn 2 intermetallic with CoGe 2 -type crystal structure has been recovered (at ambient conditions) after high-pressure high-temperature treatment of a Ni 33 Sn 67 precursor alloy at 10 GPa and 400 °C. The orthorhombic structure with Aeam space group symmetry is pseudotetragonal. Based on the evaluation of powder X-ray diffraction data, lattice parameters of a  =  b  = 6.2818 Å and c  = 11.8960 Å have been determined. Complicated line broadening and results of a further microstructure analysis, however, imply a defective character of the crystal structure. First-principles calculations with different model structures and a comparison with structural trends in the literature suggest that at the high-pressure high-temperature conditions a CuAl 2 -type crystal structure might be stable, which transforms to the recovered CoGe 2 -type crystal structure upon cooling or the release of pressure.
  6. Free, publicly-accessible full text available December 1, 2022
  7. Abstract

    In situ growth of pyrochlore iridate thin films has been a long-standing challenge due to the low reactivity of Ir at low temperatures and the vaporization of volatile gas species such as IrO3(g) and IrO2(g) at high temperatures and highPO2. To address this challenge, we combine thermodynamic analysis of the Pr-Ir-O2system with experimental results from the conventional physical vapor deposition (PVD) technique of co-sputtering. Our results indicate that only high growth temperatures yield films with crystallinity sufficient for utilizing and tailoring the desired topological electronic properties and the in situ synthesis of Pr2Ir2O7thin films is fettered by the inability to grow withPO2on the order of 10 Torr at high temperatures, a limitation inherent to the PVD process. Thus, we suggest techniques capable of supplying high partial pressure of key species during deposition, in particular chemical vapor deposition (CVD), as a route to synthesis of Pr2Ir2O7.

  8. Free, publicly-accessible full text available August 18, 2023