skip to main content

Search for: All records

Creators/Authors contains: "Shao, Yakun Sophia"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available June 17, 2024
  2. Free, publicly-accessible full text available June 17, 2024
  3. Abstract

    In this paper, a hardware-optimized approach to emotion recognition based on the efficient brain-inspired hyperdimensional computing (HDC) paradigm is proposed. Emotion recognition provides valuable information for human–computer interactions; however, the large number of input channels (> 200) and modalities (> 3 ) involved in emotion recognition are significantly expensive from a memory perspective. To address this, methods for memory reduction and optimization are proposed, including a novel approach that takes advantage of the combinatorial nature of the encoding process, and an elementary cellular automaton. HDC with early sensor fusion is implemented alongside the proposed techniques achieving two-class multi-modal classification accuracies of > 76% for valence and > 73% for arousal on the multi-modal AMIGOS and DEAP data sets, almost always better than state of the art. The required vector storage is seamlessly reduced by 98% and the frequency of vector requests by at least 1/5. The results demonstrate the potential of efficient hyperdimensional computing for low-power, multi-channeled emotion recognition tasks.

    more » « less
  4. null (Ed.)
    The design of computing systems has changed dramatically over the past decade, but most courses in advanced computer architecture remain unchanged. Computer architecture education lies at the intersection between computer science and electrical engineering, with practical exercises in classes based on appropriate levels of abstraction in the computing system design stack. Hardware-centric lab exercises often require broad infrastructure resources and tend to navigate around tedious practical implementation concepts, while software-centric exercises leave a gap between modeling and system implementation implications that students later need to overcome in professional settings. Vertical integration trends in domain-specific compute systems, as well as software-hardware co-design, are often covered in classroom lectures, but are not reflected in laboratory exercises due to complex tooling and simulation infrastructure. We describe our experiences with a joint hardware-software approach to exploring computer architecture concepts in class exercises, by using opensource processor hardware implementations, generator-based hardware design methodologies, and cloud-hosted FPGAs. This approach further enables scaling course enrollment, remote learning and a cross-class collaborative lab ecosystem, creating a connecting thread between computer science and electrical engineering experience-based curricula. 
    more » « less
  5. null (Ed.)
    One of the key challenges arising when compilers vectorize loops for today’s SIMD-compatible architectures is to decide if vectorization or interleaving is beneficial. Then, the compiler has to determine the number of instructions to pack together and the interleaving level (stride). Compilers are designed today to use fixed-cost models that are based on heuristics to make vectorization decisions on loops. However, these models are unable to capture the data dependency, the computation graph, or the organization of instructions. Alternatively, software engineers often hand-write the vectorization factors of every loop. This, however, places a huge burden on them, since it requires prior experience and significantly increases the development time. In this work, we explore a novel approach for handling loop vectorization and propose an end-to-end solution using deep reinforcement learning (RL). We conjecture that deep RL can capture different instructions, dependencies, and data structures to enable learning a sophisticated model that can better predict the actual performance cost and determine the optimal vectorization factors. We develop an end-to-end framework, from code to vectorization, that integrates deep RL in the LLVM compiler. Our proposed framework takes benchmark codes as input and extracts the loop codes. These loop codes are then fed to a loop embedding generator that learns an embedding for these loops. Finally, the learned embeddings are used as input to a Deep RL agent, which dynamically determines the vectorization factors for all the loops. We further extend our framework to support random search, decision trees, supervised neural networks, and nearest-neighbor search. We evaluate our approaches against the currently used LLVM vectorizer and loop polyhedral optimization techniques. Our experiments show 1.29×−4.73× performance speedup compared to baseline and only 3% worse than the brute-force search on a wide range of benchmarks. 
    more » « less