skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Sharifi, Nina"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Mycelium-based materials have seen a surge in popularity in the manufacturing industry in recent years. This study aims to build a lab-scale experimental facility to investigate mycelium growth under a well-controlled temperature and humidity environment and explore how substrates of very different chemical and mechanical properties can affect the microscopic morphology of the mycelium fibers during growth. Here, we design and build a customized green tent with good thermal and humidity insulation for controlling the temperature and humidity and monitor the environmental data with an Arduino chip. We develop our procedure to grow mycelium from spores to fibrous networks. It is shown that a hydrogel substrate with soluble nutrition is more favorite for mycelium growth than a hardwood board and leads to higher growing speed. We take many microscopic images of the mycelium fibers on the hardwood board and the hydrogel substrate and found no significant difference in diameter (∼3 μm). This research provides a foundation to explore the mechanism of mycelium growth and explore the environmentally friendly and time-efficient method of its growth. 
    more » « less