skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Design and build a green tent environment for growing and charactering mycelium growth in lab
Mycelium-based materials have seen a surge in popularity in the manufacturing industry in recent years. This study aims to build a lab-scale experimental facility to investigate mycelium growth under a well-controlled temperature and humidity environment and explore how substrates of very different chemical and mechanical properties can affect the microscopic morphology of the mycelium fibers during growth. Here, we design and build a customized green tent with good thermal and humidity insulation for controlling the temperature and humidity and monitor the environmental data with an Arduino chip. We develop our procedure to grow mycelium from spores to fibrous networks. It is shown that a hydrogel substrate with soluble nutrition is more favorite for mycelium growth than a hardwood board and leads to higher growing speed. We take many microscopic images of the mycelium fibers on the hardwood board and the hydrogel substrate and found no significant difference in diameter (∼3 μm). This research provides a foundation to explore the mechanism of mycelium growth and explore the environmentally friendly and time-efficient method of its growth.  more » « less
Award ID(s):
2145392
PAR ID:
10450259
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Lab on a Chip
ISSN:
1473-0197
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. AbstractMycelium is crucial in decomposing biomass and cycling nutrients in nature. While various environmental factors can influence mycelium growth, the role of substrate mechanics is not yet clear. In this study, we investigate the effect of substrate stiffness on mycelium growth. We prepared agar substrates of different concentrations to grow the mycelium, but kept other environmental and chemical conditions consistent. We made a time-lapse recording of the growing history with minimum interruption. We repeated our tests for different species. Our results generally support that mycelium grows faster on a stiffer substrate,Ganoderma lucidumgives the highest growth rate andPleurotus eryngiiis most sensitive to substrate stiffness. We combined experimental characterization and computational simulation to investigate the mechanism and discovered that mycelium concentrates on the surface of a rigid substrate, but penetrates the soft one. Our Monte Carlo simulations illustrate that such a penetration allows mycelium to grow in the three-dimensional space, but effectively slows down the surface occupation speed. Our study provides insights into fungal growth and reveals that the mycelium growth rate can be tuned through substrate stiffness, thus reducing the time for producing mycelium-based composites. Impact statementWe used agar substrates and tuned its stiffness to culture mycelium and compared tune its stiffness to culture mycelium and compare its growth in a well-controlled condition. Our results revealed that mycelium grows faster on stiffer substrates, thus fully occupying the petri dish surface more quickly. We repeated our study several times by testing four species,P. eryngii,G. lucidum,Trametes versicolor,and Flammulina velutipes,and the stiffest substrate always gives the highest mean growing rate than others. TheG. lucidumshows the highest spreading rate that is obtained on the stiffest substrate as 39.1 ± 2.0 mm2/h. We found that the mycelium on a soft substrate will grow into the substrate instead of spreading on the stiffer surface. Our Monte Carlo simulations further show that once the fibers grow into a three-dimensional substrate, its growth is slower than growing on a two-dimensional surface, providing a microscopic mechanism of the substrate stiffness effect. This study’s analysis of how substrate stiffness impacts mycelium growth is new, bridging a critical knowledge gap in understanding the relationship between substrate mechanics and fungal ecology. The knowledge from this study has a potential in accelerating sustainable manufacturing of mycelium-based composite by adjusting substrate mechanics. Graphical Abstract 
    more » « less
  2. Abstract Gradient porous structures (GPS) are characterized by structural variations along a specific direction, leading to enhanced mechanical and functional properties compared to homogeneous structures. This study explores the potential of mycelium, the root part of a fungus, as a biomaterial for generating GPS. During the intentional growth of mycelium, the filamentous network undergoes structural changes as the hyphae grow away from the feed substrate. Through microstructural analysis of sections obtained from the mycelium tissue, systematic variations in fiber characteristics (such as fiber radii distribution, crosslink density, network density, segment length) and pore characteristics (including pore size, number, porosity) are observed. Furthermore, the mesoscale mechanical moduli of the mycelium networks exhibit a gradual variation in local elastic modulus, with a significant change of approximately 50% across a 30 mm thick mycelium tissue. The structure-property analysis reveals a direct correlation between the local mechanical moduli and the network crosslink density of the mycelium. This study presents the potential of controlling growth conditions to generate mycelium-based GPS with desired functional properties. This approach, which is both sustainable and economically viable, expands the applications of mycelium-based GPS to include filtration membranes, bio-scaffolds, tissue regeneration platforms, and more. 
    more » « less
  3. The previously reported Q is a thermoresponsive coiled-coil protein capable of higher-order supramolecular assembly into fibers and hydrogels with upper critical solution temperature (UCST) behavior. Here, we introduce a new coiled-coil protein that is redesigned to disfavor lateral growth of its fibers and thus achieve a higher crosslinking density within the formed hydrogel. We also introduce a favorable hydrophobic mutation to the pore of the coiled-coil domain for increased thermostability of the protein. We note that an increase in storage modulus of the hydrogel and crosslinking density is coupled with a decrease in fiber diameter. We further fully characterize our α-helical coiled-coil (Q2) hydrogel for its structure, nano-assembly, and rheology relative to our previous single domain protein, Q, over the time of its gelation demonstrating the nature of our hydrogel self-assembly system. In this vein, we also characterize the ability of Q2 to encapsulate the small hydrophobic small molecule, curcumin, and its impact on the mechanical properties of Q2. The design parameters here not only show the importance of electrostatic potential in self-assembly but also provide a step towards predictable design of electrostatic protein interactions. 
    more » « less
  4. Serotonergic axons (fibers) have a ubiquitous distribution in vertebrate brains, where they form meshworks with well-defined, regionally-specific densities. In humans, perturbations of these densities have been associated with abnormal neural processes, including neuropsychiatric conditions. The self-organization of serotonergic meshworks depends on the cumulative behavior of many serotonergic axons, each one of which has a virtually unpredictable trajectory. In order to bridge the high stochasticity at the microscopic level and the regional stability at the mesoscopic level, we are developing tunable hydrogel systems that can support causal modeling of these processes. These same systems can support future restorative efforts in neural tissue because serotonergic axons are nearly unique in their ability to robustly regenerate in the adult brain. In the study, we extended our research in 2D-primary brainstem cultures (Hingorani et al., 2022) to 3D-hydrogels. Tunable hydrogel scaffolds can closely mimic the mechanical and biochemical properties of actual neural tissue in all three dimensions and are therefore qualitatively different from 2D-environments. However, the integration of these scaffolds with highly sensitive neurons poses unique challenges. As the first step in building a hydrogel-based platform for the bioengineering of serotonergic axons, we studied primary brainstem neurons in several commercially available hydrogel platforms. The viability and dynamics of serotonergic somata and neurites were analyzed at different days in vitro with immunocytochemistry and high-resolution confocal microscopy. In addition, live imaging of neuron growth cones was performed, and the observed dynamics was compared to our extensive database of holotomographic (refractive index-based) recordings in 2D-cultures. The progress and key problems will be discussed. This research was funded by NSF CRCNS (#1822517 and #2112862), NIMH (#MH117488), and the California NanoSystems Institute. 
    more » « less
  5. Abstract Extreme wet-bulb temperatures (Tw) are often used as indicators of heat stress. However, humid heat extremes are fundamentally compound events, and a givenTwcan be generated by various combinations of temperature and humidity. Differentiating between extreme humid heat driven by temperature versus humidity is essential to identifying these extremes’ physical drivers and preparing for their distinct impacts. Here we explore the variety of combinations of temperature and humidity contributing to humid heat experienced across the globe. In addition to using traditional metrics, we derive a novel thermodynamic state variable named “stickiness.” Analogous to the oceanographic variable “spice” (which quantifies the relative contributions of temperature and salinity to a given water density), stickiness quantifies the relative contributions of temperature and specific humidity to a givenTw. Consistent across metrics, we find that high magnitudes ofTwtend to occur in the presence of anomalously high moisture, with temperature anomalies of secondary importance. This widespread humidity dependence is consistent with the nonlinear relationship between temperature and specific humidity as prescribed by the Clausius–Clapeyron relationship. Nonetheless, there is a range of stickiness observed at moderate-to-highTwthresholds. Stickiness allows a more objective evaluation of spatial and temporal variability in the temperature versus humidity dependence of humid heat than traditional variables. In regions with high temporal variability in stickiness, predictive skill for humid heat-related impacts may improve by considering fluctuations in atmospheric humidity in addition to dry-bulb temperature. Significance StatementExtreme humid heat increases the risk of heat stress through its influence over humans’ ability to cool down by sweating. Understanding whether humid heat extremes are generated more due to elevated temperature or humidity is important for identifying factors that may increase local risk, preparing for associated impacts, and developing targeted adaptation measures. Here we explore combinations of temperature and humidity across the globe using traditional metrics and by deriving a new variable called “stickiness.” We find that extreme humid heat at dangerous thresholds occurs primarily due to elevated humidity, but that stickiness allows for thorough analysis of the drivers of humid heat at lower thresholds, including identification of regions prone to low- or high-stickiness extremes. 
    more » « less