The interaction between supermassive black hole (SMBH) feedback and the circumgalactic medium (CGM) continues to be an open question in galaxy evolution. In our study, we use smoothed particle hydrodynamics simulations to explore the impact of SMBH feedback on galactic metal retention and the motion of metals and gas into and through the CGM of L*galaxies. We examine 140 galaxies from the 25 Mpc cosmological volume
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Romulus25 , with stellar masses between log(M */M ⊙) = 9.5–11.5. We measure the fraction of metals remaining in the interstellar medium (ISM) and CGM of each galaxy and calculate the expected mass of each SMBH based on theM BH–σ relation (Kormendy & Ho 2013). The deviation of each SMBH from its expected mass, ΔM BH, is compared to the potential of its host viaσ . We find that SMBHs with accreted mass aboveM BH–σ are more effective at removing metals from the ISM than undermassive SMBHs in star-forming galaxies. Overall, overmassive SMBHs suppress the total star formation of their host galaxies and more effectively move metals from the ISM into the CGM. However, we see little to no evacuation of gas from the CGM out of their halos, in contrast with other simulations. Finally, we predict that Civ column densities in the CGM of L*galaxies are unlikely to depend on host galaxy SMBH mass. Our results show that the scatter in the low-mass end of theM BH–σ relation may indicate how effective an SMBH is in the local redistribution of mass in its host galaxy.Free, publicly-accessible full text available May 22, 2025 -
ABSTRACT We analyse a suite of 29 high-resolution zoom-in cosmological hydrodynamic simulations of massive galaxies with stellar masses $M_{\rm star} \gt 10^{10.9} \, \mathrm{M}_\odot$, with the goal of better understanding merger activity among active galactic nuclei (AGN), AGN activity in merging systems, SMBH growth during mergers, and the role of gas content in triggering AGN. Using the radiative transfer code Powderday, we generate HST-WFC3 F160W mock observations of central galaxies at redshift 0.5 < z < 3; convolve each image with a CANDELS-like point spread function; stitch each image into a real CANDELS image; and identify mergers within the synthetic images using commonly adopted non-parametric statistics. We study the connection between mergers and AGN activity in both the simulations and synthetic images and find reasonable agreement with observations from CANDELS. We find that AGN activity is not primarily driven by major mergers (stellar mass ratio > 1:4) except in a select few cases of gas-rich mergers at low redshifts (0.5 < z < 0.9). We also find that major mergers do not significantly grow the central SMBHs, indicating major mergers do not sustain long-term accretion. Moreover, the most luminous AGN in our simulations (Lbol > 1045 erg s−1) are no more likely than inactive galaxies (Lbol < 1043 erg s−1) to be found in merging systems. We conclude that mergers are not the primary drivers of AGN activity in the simulated massive galaxies studied here.