- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Asghar, Waseem (2)
-
Caputi, Massimo (2)
-
Sharma, Sandhya (2)
-
Thomas, Emmanuel (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The novel coronavirus SARS-CoV-2 was first isolated in late 2019; it has spread to all continents, infected over 700 million people, and caused over 7 million deaths worldwide to date. The high transmissibility of the virus and the emergence of novel strains with altered pathogenicity and potential resistance to therapeutics and vaccines are major challenges in the study and treatment of the virus. Ongoing screening efforts aim to identify new cases to monitor the spread of the virus and help determine the danger connected to the emergence of new variants. Given its sensitivity and specificity, nucleic acid amplification tests (NAATs) such as RT-qPCR are the gold standard for SARS-CoV-2 detection. However, due to high costs, complexity, and unavailability in low-resource and point-of-care (POC) settings, the available RT-qPCR assays cannot match global testing demands. An alternative NAAT, RT-LAMP-based SARS-CoV-2 detection offers scalable, low-cost, and rapid testing capabilities. We have developed an automated RT-LAMP-based microfluidic chip that combines the RNA isolation, purification, and amplification steps on the same device and enables the visual detection of SARS-CoV-2 within 40 min from saliva and nasopharyngeal samples. The entire assay is executed inside a uniquely designed, inexpensive disposable microfluidic chip, where assay components and reagents have been optimized to provide precise and qualitative results and can be effectively deployed in POC settings. Furthermore, this technology could be easily adapted for other novel emerging viruses.more » « less
-
Sharma, Sandhya; Thomas, Emmanuel; Caputi, Massimo; Asghar, Waseem (, Biosensors)Hepatitis C virus (HCV) infections occur in approximately 3% of the world population. The development of an enhanced and extensive-scale screening is required to accomplish the World Health Organization’s (WHO) goal of eliminating HCV as a public health problem by 2030. However, standard testing methods are time-consuming, expensive, and challenging to deploy in remote and underdeveloped areas. Therefore, a cost-effective, rapid, and accurate point-of-care (POC) diagnostic test is needed to properly manage the disease and reduce the economic burden caused by high case numbers. Herein, we present a fully automated reverse-transcription loop-mediated isothermal amplification (RT-LAMP)-based molecular diagnostic set-up for rapid HCV detection. The set-up consists of an automated disposable microfluidic chip, a small surface heater, and a reusable magnetic actuation platform. The microfluidic chip contains multiple chambers in which the plasma sample is processed. The system utilizes SYBR green dye to detect the amplification product with the naked eye. The efficiency of the microfluidic chip was tested with human plasma samples spiked with HCV virions, and the limit of detection observed was 500 virions/mL within 45 min. The entire virus detection process was executed inside a uniquely designed, inexpensive, disposable, and self-driven microfluidic chip with high sensitivity and specificity.more » « less
An official website of the United States government
