skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Sharma, Shiv K"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The sulfur over calcium ratio (S/Ca) in foraminiferal shells was recently proposed as a new and independent proxy for reconstructing marine inorganic carbon chemistry. This new approach assumes that sulfur is incorporated into CaCO3 predominantly in the form of sulfate (SO42−) through lattice substitution for carbonate ions (CO32–), and that S/Ca thus reflects seawater [CO32–]. Although foraminiferal growth experiments validated this approach, field studies showed controversial results suggesting that the potential impact of [CO32–] may be overwritten by one or more parameters. Hence, to better understand the inorganic processes involved, we here investigate S/Ca values in inorganically precipitated CaCO3 (S/Ca(cc)) grown in solutions of CaCl2 − Na2CO3 − Na2SO4 − B(OH)3 − MgCl2. Experimental results indicate the dependence of sulfate partitioning in CaCO3 on the carbon chemistry via changing pH and suggest that faster precipitation rates increase the partition coefficient for sulfur. The S/Ca ratios of our inorganic calcite samples show positive correlation with modelled [CaSO40](aq), but not with the concentration of free SO42− ions. This challenges the traditional model for sulfate incorporation in calcite and implies that the uptake of sulfate potentially occurs via ion-ion pairs rather than being incorporated as single anions. Based on the [Ca2+] dependence via speciation, we here suggest a critical evaluation of this potential proxy. As sulfate complexation seems to control sulfate uptake in inorganic calcite, application as a proxy using foraminiferal calcite may be limited to periods for which seawater chemistry is well-constrained. As foraminiferal calcite growth is modulated by inward Ca2+ flow to the site of calcification coupled to outward H+ pumping, sulfate incorporation as CaSO40 ion-pair in the foraminifer’s shell also provides a mechanistic link for the observed relationship between S/Ca(cc) and [CO32–]. 
    more » « less
  2. null (Ed.)
  3. null (Ed.)
  4. Nanoparticles have been conjugated to biological systems for numerous applications such as self-assembly, sensing, imaging, and therapy. Development of more reliable and robust biosensors that exhibit high response rate, increased detection limit, and enhanced useful lifetime is in high demand. We have developed a sensing platform by the conjugation of β-galactosidase, a crucial enzyme, with lab-synthesized gel-like carbon dots (CDs) which have high luminescence, photostability, and easy surface functionalization. We found that the conjugated enzyme exhibited higher stability towards temperature and pH changes in comparison to the native enzyme. This enriched property of the enzyme was distinctly used to develop a stable, reliable, robust biosensor. The detection limit of the biosensor was found to be 2.9 × 10−4 M, whereas its sensitivity was 0.81 µA·mmol−1·cm−2. Further, we used the Langmuir monolayer technique to understand the surface properties of the conjugated enzyme. It was found that the conjugate was highly stable at the air/subphase interface which additionally reinforces the suitability of the use of the conjugated enzyme for the biosensing applications. 
    more » « less