skip to main content

Search for: All records

Creators/Authors contains: "Sharpnack, James L"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In the 1-dimensional multiple changepoint detection problem, we derive a new fast error rate for the fused lasso estimator, under the assumption that the mean vector has a sparse number of changepoints. This rate is seen to be suboptimal (compared to the minimax rate) by only a factor of loglogn. Our proof technique is centered around a novel construction that we call a lower interpolant. We extend our results to misspecified models and exponential family distributions. We also describe the implications of our error analysis for the approximate screening of changepoints.
  2. We consider the problem of estimating the values of a function over n nodes of a d-dimensional grid graph (having equal side lengths) from noisy observations. The function is assumed to be smooth, but is allowed to exhibit different amounts of smoothness at different regions in the grid. Such heterogeneity eludes classical measures of smoothness from nonparametric statistics, such as Holder smoothness. Meanwhile, total variation (TV) smoothness classes allow for heterogeneity, but are restrictive in another sense: only constant functions count as perfectly smooth (achieve zero TV). To move past this, we define two new higher-order TV classes, based on two ways of compiling the discrete derivatives of a parameter across the nodes. We relate these two new classes to Holder classes, and derive lower bounds on their minimax errors. We also analyze two naturally associated trend filtering methods; when d=2, each is seen to be rate optimal over the appropriate class.