skip to main content


Search for: All records

Creators/Authors contains: "She, Qianxuan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Methe, Barbara (Ed.)
    ABSTRACT Environmental strains of the soil bacterium Bacillus subtilis have valuable applications in agriculture, industry, and biotechnology; however, environmental strains are genetically less accessible. This reduced accessibility is in sharp contrast to laboratory strains, which are well known for their natural competence, and a limitation in their applications. In this study, we observed that robust biofilm formation by environmental strains of B. subtilis greatly reduced the frequency of competent cells in the biofilm. By using model strain 3610, we revealed a cross-pathway regulation that allows biofilm matrix producers and competence-developing cells to undergo mutually exclusive cell differentiation. We further demonstrated that the competence activator ComK represses the key biofilm regulatory gene sinI by directly binding to the sinI promoter, thus blocking competent cells from simultaneously becoming matrix producers. In parallel, the biofilm activator SlrR represses competence through three distinct mechanisms involving both genetic regulation and cell morphological changes. Finally, we discuss the potential implications of limiting competence in a bacterial biofilm. IMPORTANCE The soil bacterium Bacillus subtilis can form robust biofilms, which are important for its survival in the environment. B. subtilis also exhibits natural competence. By investigating competence development in B. subtilis in situ during biofilm formation, we reveal that robust biofilm formation often greatly reduces the frequency of competent cells within the biofilm. We then characterize a cross-pathway regulation that allows cells in these two developmental events to undergo mutually exclusive cell differentiation during biofilm formation. Finally, we discuss potential biological implications of limiting competence in a bacterial biofilm. 
    more » « less
  2. Abstract

    InBacillus subtilis, robust biofilm formation requires large quantities of ferric iron. Here we show that this process requires preferential production of a siderophore precursor, 2,3-dihydroxybenzoate, instead of the siderophore bacillibactin. A large proportion of iron is associated extracellularly with the biofilm matrix. The biofilms are conductive, with extracellular iron potentially acting as electron acceptor. A relatively small proportion of ferric iron is internalized and boosts production of iron-containing enzymes involved in respiratory electron transfer and establishing strong membrane potential, which is key to biofilm matrix production. Our study highlights metabolic diversity and versatile energy generation strategies withinB. subtilisbiofilms.

     
    more » « less
  3. Summary

    Rhizomicrobiome, the communities of microorganisms surrounding the root of the plant, plays a vital role in promoting plant growth and health. The composition of rhizomicrobiome is dynamic both temporally and spatially, and is influenced greatly by the plant host and environmental factors. One of the key influencing factors is rhizodeposits, composed of root‐released tissue cells, exudates, lysates, volatile compounds, etc. Rhizodeposits are rich in carbon and nitrogen elements, and able to select and fuel the growth of rhizomicrobiome. In this minireview, we overview the generation, composition and dynamics of rhizodeposits, and discuss recent work describing the general and specific impacts of rhizodeposits on rhizomicrobiome. We focus further on root exudates, the most dynamic component of rhizodeposits, and review recent progresses about the influence of specific root exudates in promoting bacterial root colonization, inducing biofilm development, acting as plant defence and shaping the rhizomicrobiome.

     
    more » « less