skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Shen, Dakun"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Low-cost and easily obtained Global Navigation Satellite System (e.g., GPS) receivers are broadly embedded into various devices for providing location information. In this work, we develop a secret key establishment by utilizing the driving data obtained from GPS. Those data may exhibit randomness as the driver may alternatively step on the accelerator and brake pedals from time to time with varying force in order to adapt to the road traffic during driving. A driving vehicle provides a physically secure boundary as the devices co-located within the vehicle can observe common GPS data, as opposed to devices that do not experience the trip. We implement this key establishment in a real-world environment on top of off-the-shelf GPS-equipped devices as well as widely deployed GPS modules each connected with Raspberry Pi. Extensive experimental results show that when a user drives around 1.36 km for 1.32 minutes on average under moderate traffic conditions, two legitimate GPS-equipped devices in the vehicle can successfully establish a 128-bit secret key. Meanwhile, an attacker following the target vehicle is unable to establish a secret key with the legitimate devices. 
    more » « less