skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, December 13 until 2:00 AM ET on Saturday, December 14 due to maintenance. We apologize for the inconvenience.


Title: DASK: Driving-Assisted Secret Key Establishment
Low-cost and easily obtained Global Navigation Satellite System (e.g., GPS) receivers are broadly embedded into various devices for providing location information. In this work, we develop a secret key establishment by utilizing the driving data obtained from GPS. Those data may exhibit randomness as the driver may alternatively step on the accelerator and brake pedals from time to time with varying force in order to adapt to the road traffic during driving. A driving vehicle provides a physically secure boundary as the devices co-located within the vehicle can observe common GPS data, as opposed to devices that do not experience the trip. We implement this key establishment in a real-world environment on top of off-the-shelf GPS-equipped devices as well as widely deployed GPS modules each connected with Raspberry Pi. Extensive experimental results show that when a user drives around 1.36 km for 1.32 minutes on average under moderate traffic conditions, two legitimate GPS-equipped devices in the vehicle can successfully establish a 128-bit secret key. Meanwhile, an attacker following the target vehicle is unable to establish a secret key with the legitimate devices.  more » « less
Award ID(s):
1948547
PAR ID:
10381305
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
IEEE Conference on Communications and Network Security (CNS)
Page Range / eLocation ID:
73 to 81
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. With the advent of the in-vehicle infotainment (IVI) systems (e.g., Android Automotive) and other portable devices (e.g., smartphones) that may be brought into a vehicle, it becomes crucial to establish a secure channel between the vehicle and an in-vehicle device or between two in-vehicle devices. Traditional pairing schemes are tedious, as they require user interaction (e.g., manually typing in a passcode or bringing the two devices close to each other). Modern vehicles, together with smartphones and many emerging Internet-of-things (IoT) devices (e.g., dashcam) are often equipped with built-in Global Positioning System (GPS) receivers. In this paper, we propose a GPS-based Key estab- lishment technique, called GPSKey, by leveraging the inherent randomness of vehicle movement. Specifically, vehicle movement changes with road ground conditions, traffic situations, and pedal operations. It thus may have rich randomness. Meanwhile, two in- vehicle GPS receivers can observe the same vehicle movement and exploit it for key establishment without requiring user interaction. We implement a prototype of GPSKey on top of off-the-shelf devices. Experimental results show that legitimate devices in the same vehicle require 1.18-minute of driving on average to establish a 128-bit key. Meanwhile, the attacker who follows or leads the victim’s vehicle is unable to infer the key. 
    more » « less
  2. Autonomous vehicles (AVs) use diverse sensors to understand their surroundings as they continually make safety-critical decisions. However, establishing trust with other AVs is a key prerequisite because safety-critical decisions cannot be made based on data shared from untrusted sources. Existing protocols require an infrastructure network connection and a third-party root of trust to establish a secure channel, which are not always available.In this paper, we propose a sensor-fusion approach for mobile trust establishment, which combines GPS and visual data. The combined data forms evidence that one vehicle is nearby another, which is a strong indication that it is not a remote adversary hence trustworthy. Our preliminary experiments show that our sensor-fusion approach achieves above 80% successful pairing of two legitimate vehicles observing the same object with 5 meters of error. Based on these preliminary results, we anticipate that a refined approach can support fuzzy trust establishment, enabling better collaboration between nearby AVs. 
    more » « less
  3. null (Ed.)
    For energy-efficient Connected and Automated Vehicle (CAV) Eco-driving control on signalized arterials under uncertain traffic conditions, this paper explicitly considers traffic control devices (e.g., road markings, traffic signs, and traffic signals) and road geometry (e.g., road shapes, road boundaries, and road grades) constraints in a data-driven optimization-based Model Predictive Control (MPC) modeling framework. This modeling framework uses real-time vehicle driving and traffic signal data via Vehicle-to-Infrastructure (V2I) and Vehicle-to-Vehicle (V2V) communications. In the MPC-based control model, this paper mathematically formulates location-based traffic control devices and road geometry constraints using the geographic information from High-Definition (HD) maps. The location-based traffic control devices and road geometry constraints have the potential to improve the safety, energy, efficiency, driving comfort, and robustness of connected and automated driving on real roads by considering interrupted flow facility locations and road geometry in the formulation. We predict a set of uncertain driving states for the preceding vehicles through an online learning-based driving dynamics prediction model. We then solve a constrained finite-horizon optimal control problem with the predicted driving states to obtain a set of Eco-driving references for the controlled vehicle. To obtain the optimal acceleration or deceleration commands for the controlled vehicle with the set of Eco-driving references, we formulate a Distributionally Robust Stochastic Optimization (DRSO) model (i.e., a special case of data-driven optimization models under moment bounds) with Distributionally Robust Chance Constraints (DRCC) with location-based traffic control devices and road geometry constraints. We design experiments to demonstrate the proposed model under different traffic conditions using real-world connected vehicle trajectory data and Signal Phasing and Timing (SPaT) data on a coordinated arterial with six actuated intersections on Fuller Road in Ann Arbor, Michigan from the Safety Pilot Model Deployment (SPMD) project. 
    more » « less
  4. Imputing missing data is a critical task in data-driven intelligent transportation systems. During recent decades there has been a considerable investment in developing various types of sensors and smart systems, including stationary devices (e.g., loop detectors) and floating vehicles equipped with global positioning system (GPS) trackers to collect large-scale traffic data. However, collected data may not include observations from all road segments in a traffic network for different reasons, including sensor failure, transmission error, and because GPS-equipped vehicles may not always travel through all road segments. The first step toward developing real-time traffic monitoring and disruption prediction models is to estimate missing values through a systematic data imputation process. Many of the existing data imputation methods are based on matrix completion techniques that utilize the inherent spatiotemporal characteristics of traffic data. However, these methods may not fully capture the clustered structure of the data. This paper addresses this issue by developing a novel data imputation method using PARATUCK2 decomposition. The proposed method captures both spatial and temporal information of traffic data and constructs a low-dimensional and clustered representation of traffic patterns. The identified spatiotemporal clusters are used to recover network traffic profiles and estimate missing values. The proposed method is implemented using traffic data in the road network of Manhattan in New York City. The performance of the proposed method is evaluated in comparison with two state-of-the-art benchmark methods. The outcomes indicate that the proposed method outperforms the existing state-of-the-art imputation methods in complex and large-scale traffic networks.

     
    more » « less
  5. Abstract—Object perception plays a fundamental role in Cooperative Driving Automation (CDA) which is regarded as a revolutionary promoter for next-generation transportation systems. However, the vehicle-based perception may suffer from the limited sensing range and occlusion as well as low penetration rates in connectivity. In this paper, we propose Cyber Mobility Mirror (CMM), a next-generation real-world object perception system for 3D object detection, tracking, localization, and reconstruction, to explore the potential of roadside sensors for enabling CDA in the real world. The CMM system consists of six main components: i) the data pre-processor to retrieve and preprocess the raw data; ii) the roadside 3D object detector to generate 3D detection results; iii) the multi-object tracker to identify detected objects; iv) the global locator to generate geo-localization information; v) the mobile-edge-cloud-based communicator to transmit perception information to equipped vehicles, and vi) the onboard advisor to reconstruct and display the real-time traffic conditions. An automatic perception evaluation approach is proposed to support the assessment of data-driven models without human-labeling requirements and a CMM field-operational system is deployed at a real-world intersection to assess the performance of the CMM. Results from field tests demonstrate that our CMM prototype system can achieve 96.99% precision and 83.62% recall for detection and 73.55% ID-recall for tracking. High-fidelity real-time traffic conditions (at the object level) can be geo-localized with a root-mean-square error (RMSE) of 0.69m and 0.33m for lateral and longitudinal direction, respectively, and displayed on the GUI of the equipped vehicle with a frequency of 3 − 4Hz. 
    more » « less