skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, May 23 until 2:00 AM ET on Friday, May 24 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Sheng, Zhiyu"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Neuroprosthetic devices that use transcutaneous neuromuscular electrical stimulation (NMES) are potential interventions to restore skeletal muscle function in people with neurological disorders. As commonly noted, how to assess the NMES-induced muscle fatigue is a critical problem. This is because the capability of fatigue assessment is a necessary precursor for optimally modulating the NMES dosage to improve the control performance of a neuroprosthesis and ensure user’s safety. To effectively estimate the NMES-induced muscle fatigue, this paper proposes a novel state observer that combines a mathematical predictive fatigue model and intermittent feedback from ultrasound-derived strain images. The strain images quantify muscle contractility during NMES. Principal component regression (PCR) is used to derive a relationship between the strain images and instantaneous muscle force production. Lyapunov stability analysis was performed to obtain the convergence property of the designed observer. A globally uniformly ultimately bounded (GUUB) result was obtained. Simulations based on pre-recorded data from a human experiment were also conducted to demonstrate the performance of the designed observer.

     
    more » « less