skip to main content


Title: An Ultrasound Imaging Based Observer for Estimating NMES-Induced Muscle Fatigue: Theory and Simulation
Abstract

Neuroprosthetic devices that use transcutaneous neuromuscular electrical stimulation (NMES) are potential interventions to restore skeletal muscle function in people with neurological disorders. As commonly noted, how to assess the NMES-induced muscle fatigue is a critical problem. This is because the capability of fatigue assessment is a necessary precursor for optimally modulating the NMES dosage to improve the control performance of a neuroprosthesis and ensure user’s safety. To effectively estimate the NMES-induced muscle fatigue, this paper proposes a novel state observer that combines a mathematical predictive fatigue model and intermittent feedback from ultrasound-derived strain images. The strain images quantify muscle contractility during NMES. Principal component regression (PCR) is used to derive a relationship between the strain images and instantaneous muscle force production. Lyapunov stability analysis was performed to obtain the convergence property of the designed observer. A globally uniformly ultimately bounded (GUUB) result was obtained. Simulations based on pre-recorded data from a human experiment were also conducted to demonstrate the performance of the designed observer.

 
more » « less
Award ID(s):
1646009
NSF-PAR ID:
10321599
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Proceedings of the ASME 2020 Dynamic Systems and Control Conference
Volume:
1
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Neuromuscular electrical stimulation (NMES) targeting the muscle belly is commonly used to restore muscle strength in individuals with neurological disorders. However, early onset of muscle fatigue is a major limiting factor. Transcutaneous nerve stimulation (TNS) can delay muscle fatigue compared with traditional NMES techniques. However, the recruitment of Ia afferent fibers has not be specifically targeted to maximize muscle activation through the reflex pathway, which can lead to more orderly recruitment of motor units, further delaying fatigue. This preliminary study assessed the distribution of M-wave and H-reflex of intrinsic and extrinsic finger muscles. TNS was delivered using an electrode array placed along the medial side of the upper arm. Selective electrode pairs targeted the median and ulnar nerves innervating the finger flexors. High-density electromyography (HD EMG) was utilized to quantify the spatial distribution of the elicited activation of finger intrinsic and extrinsic muscles along the hand and forearm. The spatial patterns were characterized through isolation of the M-wave and H-reflex across various stimulation levels and EMG channels. Our preliminary results showed that, by altering the stimulation amplitude, distinct M-wave and H-reflex responses were evoked across EMG channels. In addition, distinct stimulation locations appeared to result in varied levels of reflex recruitment. Our findings indicate that it is possible to adjust stimulation parameters to maximize reflex activation, which can potentially facilitate physiological recruitment order of motoneurons. 
    more » « less
  2. Leveraging living muscle as an efficient and adaptive actuator for soft robots has been of increasing interest over the past decade, with a focus on proof‐of‐concept demonstrations of function. Reproducible design and scalable manufacturing of biohybrid machines requires methods to increase the stroke output of strain‐limited muscle actuators and enable accurate and precise quality control and performance monitoring. Compliant mechanical elements, termed flexures, are designed to enhance muscle contractile stroke to ≈5× previously reported values and decode contraction dynamics with high spatiotemporal resolution. Combining rigid and flexible elements within a linear elastic flexure enables us to outperform the sensitivity of gold standard elastomeric beam‐based measurements of muscle contraction at both low‐ and high‐frequency stimulations. Flexures are leveraged to make quantitative comparisons of force, work, and power outputs in muscle actuators, driving us to discover a new observation of frequency‐dependent fatigue in muscle, and also develop a novel method for tuning muscle contractile dynamics in a frequency‐independent manner. By enhancing the contractile stroke of muscle actuators and precisely tuning contractile dynamics and endurance with unprecedented precision, this study sets the stage for leveraging flexures to improve robust, reproducible, and predictive design and manufacturing of next‐generation biohybrid robots.

     
    more » « less
  3. Abstract

    Fatigue-induced cracking in steel components and other brittle materials of civil structures is one of the primary mechanisms of degrading structural integrity and can lead to sudden failures. However, these cracks are often difficult to detect during visual inspections, and off-the-shelf sensing technologies can generally only be used to monitor already identified cracks because of their spatial localization. A solution is to leverage advances in large area electronics to cover large surfaces with skin-type sensors. Here, the authors propose an elastic and stretchable multifunctional skin sensor that combines optical and capacitive sensing properties. The multifunctional sensor consists of a soft stretchable structural color film sandwiched between transparent carbon nanotube electrodes to form a parallel plate capacitor. The resulting device exhibits a reversible and repeatable structural color change from light blue to deep blue with an angle-independent property, as well as a measurable change in capacitance, under external mechanical strain. The optical function is passive and engineered to visually assist in localizing fatigue cracks, and the electrical function is added to send timely warnings to infrastructure operators. The performance of the device is characterized in a free-standing configuration and further extended to a fatigue crack monitoring application. A correlation coefficient-based image processing method is developed to quantify the strain measured by the optical color response. Results show that the sensor performs well in detecting and quantifying fatigue cracks using both the color and capacitive signals. In particular, the color signal can be measured with inexpensive cameras, and the electrical signal yields good linearity, resolution, and accuracy. Tests conducted on two steel specimens demonstrate a minimum detectable crack length of 0.84 mm.

     
    more » « less
  4. Abstract

    Muscle fatigue can reduce performance potentially affecting an organism's fitness. However, some aspects of fatigue could be overcome by employing a latch-mediated spring actuated (LaMSA) system where muscle activity is decoupled from movement. We estimated the effects of muscle fatigue on different aspects of mandible performance in six species of ants, two whose mandibles are directly actuated by muscles and four that have LaMSA “trap-jaw” mandibles. We found evidence that the LaMSA system of trap-jaw ants may prevent some aspects of performance from declining with repeated use, including duration, acceleration, and peak velocity. However, inter-strike interval increased with repeated strikes suggesting that muscle fatigue still comes into play during the spring loading phase. In contrast, one species with directly actuated mandibles showed a decline in bite force over time. These results have implications for design principles aimed at minimizing the effects of fatigue on performance in spring and motor actuated systems.

     
    more » « less
  5. Abstract Introduction

    Optimal frequency modulation during functional electrical stimulation (FES) may minimize or delay the onset of FES‐induced muscle fatigue.

    Methods

    An offline dynamic optimization method, constrained to a modified Hill‐Huxley model, was used to determine the minimum number of pulses that would maintain a constant desired isometric contraction force.

    Results

    Six able‐bodied participants were recruited for the experiments, and their quadriceps muscles were stimulated while they sat on a leg extension machine. The force–time (F–T) integrals and peak forces after the pulse train was delivered were found to be statistically significantly greater than the force–time integrals and peak forces obtained after a constant frequency train was delivered.

    Discussion

    Experimental results indicated that the optimized pulse trains induced lower levels of muscle fatigue compared with constant frequency pulse trains. This could have a potential advantage over current FES methods that often choose a constant frequency stimulation train.Muscle Nerve57: 634–641, 2018

     
    more » « less