skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, May 16 until 2:00 AM ET on Saturday, May 17 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Sheybani, N"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We propose SenseHash, a novel design for the lightweight in-hardware mystification of the sensed data at the origin. The framework aims to ensure the privacy of sensitive sensor values while preserving their utility. The sensors are assumed to interface to various (potentially malicious) communication and computing components in the Internet-of-things (IoT) and other emerging pervasive computing scenarios. The primary security primitives of our work are Locality Sensitive Hashing (LSH) combined with Differential Privacy (DP) and secure construction of LSH. Our construction allows (i) sub-linear search in sensor readings while ensuring their security against triangulation attack, and (ii) differentially private statistics of the readings. SenseHash includes hardware architecture as well as accompanying protocols to efficiently utilize the secure readings in practical scenarios. Alongside these scenarios, we present an automated workflow to generalize the application of the mystified readings. Proof-of-concept FPGA implementation of the system demonstrates its practicability and low overhead in terms of hardware resources, energy consumption, and protocol execution time. 
    more » « less