skip to main content


Title: SenseHash: Computing on Sensor Values Mystified At the Origin
We propose SenseHash, a novel design for the lightweight in-hardware mystification of the sensed data at the origin. The framework aims to ensure the privacy of sensitive sensor values while preserving their utility. The sensors are assumed to interface to various (potentially malicious) communication and computing components in the Internet-of-things (IoT) and other emerging pervasive computing scenarios. The primary security primitives of our work are Locality Sensitive Hashing (LSH) combined with Differential Privacy (DP) and secure construction of LSH. Our construction allows (i) sub-linear search in sensor readings while ensuring their security against triangulation attack, and (ii) differentially private statistics of the readings. SenseHash includes hardware architecture as well as accompanying protocols to efficiently utilize the secure readings in practical scenarios. Alongside these scenarios, we present an automated workflow to generalize the application of the mystified readings. Proof-of-concept FPGA implementation of the system demonstrates its practicability and low overhead in terms of hardware resources, energy consumption, and protocol execution time.  more » « less
Award ID(s):
2016737
NSF-PAR ID:
10382350
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
IEEE transactions on emerging topics in computing
ISSN:
2168-6750
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The recent edge computing infrastructure introduces a new computing model that works as a complement of the traditional cloud computing. The edge nodes in the infrastructure reduce the network latency of the cloud computing model and increase data privacy by offloading the sensitive computation from the cloud to the edge. Recent research focuses on the applications and performance of the edge computing, but less attention is paid to the security of this new computing paradigm. Inspired by the recent move of hardware vendors that introducing hardware-assisted Trusted Execution Environment (TEE), we believe applying these TEEs on the edge nodes would be a natural choice to secure the computation and sensitive data on these nodes. In this paper, we investigate the typical hardware-assisted TEEs and evaluate the performance of these TEEs to help analyze the feasibility of deploying them on the edge platforms. Our experiments show that the performance overhead introduced by the TEEs is low, which indicates that integrating these TEEs into the edge nodes can efficiently mitigate security loopholes with a low performance overhead. 
    more » « less
  2. The recent edge computing infrastructure introduces a new computing model that works as a complement of the traditional cloud computing. The edge nodes in the infrastructure reduce the network latency of the cloud computing model and increase data privacy by offloading the sensitive computation from the cloud to the edge. Recent research focuses on the applications and performance of the edge computing, but less attention is paid to the security of this new computing paradigm. Inspired by the recent move of hardware vendors that introducing hardware-assisted Trusted Execution Environment (TEE), we believe applying these TEEs on the edge nodes would be a natural choice to secure the computation and sensitive data on these nodes. In this paper, we investigate the typical hardware-assisted TEEs and evaluate the performance of these TEEs to help analyze the feasibility of deploying them on the edge platforms. Our experiments show that the performance overhead introduced by the TEEs is low, which indicates that integrating these TEEs into the edge nodes can efficiently mitigate security loopholes with a low performance overhead. 
    more » « less
  3. Smart mobile devices have become an integral part of people's life and users often input sensitive information on these devices. However, various side channel attacks against mobile devices pose a plethora of serious threats against user security and privacy. To mitigate these attacks, we present a novel secure Back-of-Device (BoD) input system, SecTap, for mobile devices. To use SecTap, a user tilts her mobile device to move a cursor on the keyboard and tap the back of the device to secretly input data. We design a tap detection method by processing the stream of accelerometer readings to identify the user's taps in real time. The orientation sensor of the mobile device is used to control the direction and the speed of cursor movement. We also propose an obfuscation technique to randomly and effectively accelerate the cursor movement. This technique not only preserves the input performance but also keeps the adversary from inferring the tapped keys. Extensive empirical experiments were conducted on different smart phones to demonstrate the usability and security on both Android and iOS platforms. 
    more » « less
  4. Given sensor units distributed throughout an environment, we consider the problem of consolidating readings into a single coherent view when sensors wish to limit knowledge of their specific readings. Standard fusion methods make no guarantees about what curious participants may learn. For applications where privacy guarantees are required, we introduce a fusion approach that limits what can be inferred. First, it forms an aggregate stream, oblivious to the underlying sensor data, and then evaluates that stream on a combinatorial filter. This is achieved via secure multi-party computation techniques built on cryptographic primitives, which we extend and apply to the problem of fusing discrete sensor signals. We prove that the extensions preserve security under the model of semi-honest adversaries. Also, for a simple target tracking case study, we examine a proof-of-concept implementation: analyzing the (empirical) running times for components in the architecture and suggesting directions for future improvement. 
    more » « less
  5. Abstract Background

    Estimation of genetic relatedness, or kinship, is used occasionally for recreational purposes and in forensic applications. While numerous methods were developed to estimate kinship, they suffer from high computational requirements and often make an untenable assumption of homogeneous population ancestry of the samples. Moreover, genetic privacy is generally overlooked in the usage of kinship estimation methods. There can be ethical concerns about finding unknown familial relationships in third-party databases. Similar ethical concerns may arise while estimating and reporting sensitive population-level statistics such as inbreeding coefficients for the concerns around marginalization and stigmatization.

    Results

    Here, we present SIGFRIED, which makes use of existing reference panels with a projection-based approach that simplifies kinship estimation in the admixed populations. We use simulated and real datasets to demonstrate the accuracy and efficiency of kinship estimation. We present a secure federated kinship estimation framework and implement a secure kinship estimator using homomorphic encryption-based primitives for computing relatedness between samples in two different sites while genotype data are kept confidential. Source code and documentation for our methods can be found at https://doi.org/10.5281/zenodo.7053352.

    Conclusions

    Analysis of relatedness is fundamentally important for identifying relatives, in association studies, and for estimation of population-level estimates of inbreeding. As the awareness of individual and group genomic privacy is growing, privacy-preserving methods for the estimation of relatedness are needed. Presented methods alleviate the ethical and privacy concerns in the analysis of relatedness in admixed, historically isolated and underrepresented populations.

    Short Abstract

    Genetic relatedness is a central quantity used for finding relatives in databases, correcting biases in genome wide association studies and for estimating population-level statistics. Methods for estimating genetic relatedness have high computational requirements, and occasionally do not consider individuals from admixed ancestries. Furthermore, the ethical concerns around using genetic data and calculating relatedness are not considered. We present a projection-based approach that can efficiently and accurately estimate kinship. We implement our method using encryption-based techniques that provide provable security guarantees to protect genetic data while kinship statistics are computed among multiple sites.

     
    more » « less