Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Large spatio‐temporal gradients in the Congo basin vegetation and rainfall are observed. However, its water‐balance (evapotranspiration minus precipitation, orET − P) is typically measured at basin‐scales, limited primarily by river‐discharge data, spatial resolution of terrestrial water storage measurements, and poorly constrainedET. We use observations of the isotopic composition of water vapor to quantify the spatio‐temporal variability of net surface water fluxes across the Congo Basin between 2003 and 2018. These data are calibrated at basin scale using satellite gravity and total Congo river discharge measurements and then used to estimate time‐varyingET − Pover four quadrants representing the Congo Basin, providing first estimates of this kind for the region. We find that the multi‐year record, seasonality, and interannual variability ofET − Pfrom both the isotopes and the gravity/river discharge based estimates are consistent. Additionally, we use precipitation and gravity‐based estimates with our water vapor isotope‐basedET − Pto calculate time and space averagedETand net river discharge within the Congo Basin. These quadrant‐scale moisture flux estimates indicate (a) substantial recycling of moisture in the Congo Basin (temporally and spatially averagedET/P > 70%), consistent with models and visible light‐basedETestimates, and (b) net river outflow is largest in the Western Congo where there are more rivers and higher flow rates. Our results confirm the importance ofETin modulating the Congo water cycle relative to other water sources.more » « less
-
Abstract Atmospheric humidity and soil moisture in the Amazon forest are tightly coupled to the region’s water balance, or the difference between two moisture fluxes, evapotranspiration minus precipitation (ET-P). However, large and poorly characterized uncertainties in both fluxes, and in their difference, make it challenging to evaluate spatiotemporal variations of water balance and its dependence on ET or P. Here, we show that satellite observations of the HDO/H 2 O ratio of water vapor are sensitive to spatiotemporal variations of ET-P over the Amazon. When calibrated by basin-scale and mass-balance estimates of ET-P derived from terrestrial water storage and river discharge measurements, the isotopic data demonstrate that rainfall controls wet Amazon water balance variability, but ET becomes important in regulating water balance and its variability in the dry Amazon. Changes in the drivers of ET, such as above ground biomass, could therefore have a larger impact on soil moisture and humidity in the dry (southern and eastern) Amazon relative to the wet Amazon.more » « less
-
Abstract. The flow of carbon through terrestrial ecosystems and the response toclimate are critical but highly uncertain processes in the global carboncycle. However, with a rapidly expanding array of in situ and satellitedata, there is an opportunity to improve our mechanistic understanding ofthe carbon (C) cycle's response to land use and climate change. Uncertaintyin temperature limitation on productivity poses a significant challenge topredicting the response of ecosystem carbon fluxes to a changing climate.Here we diagnose and quantitatively resolve environmental limitations onthe growing-season onset of gross primary production (GPP) using nearly 2 decades of meteorological and C flux data (2000–2018) at a subalpineevergreen forest in Colorado, USA. We implement the CARbonDAta-MOdel fraMework (CARDAMOM) model–datafusion network to resolve the temperature sensitivity of spring GPP. Tocapture a GPP temperature limitation – a critical component of the integratedsensitivity of GPP to temperature – we introduced a cold-temperature scalingfunction in CARDAMOM to regulate photosynthetic productivity. We found thatGPP was gradually inhibited at temperatures below 6.0 ∘C (±2.6 ∘C) and completely inhibited below −7.1 ∘C(±1.1 ∘C). The addition of this scaling factor improvedthe model's ability to replicate spring GPP at interannual and decadal timescales (r=0.88), relative to the nominal CARDAMOM configuration (r=0.47), and improved spring GPP model predictability outside of the dataassimilation training period (r=0.88). While cold-temperaturelimitation has an important influence on spring GPP, it does not have asignificant impact on integrated growing-season GPP, revealing that otherenvironmental controls, such as precipitation, play a more important role inannual productivity. This study highlights growing-season onset temperatureas a key limiting factor for spring growth in winter-dormant evergreenforests, which is critical in understanding future responses to climatechange.more » « less
-
Abstract Recent advances in satellite observations of solar‐induced chlorophyll fluorescence (SIF) provide a new opportunity to constrain the simulation of terrestrial gross primary productivity (GPP). Accurate representation of the processes driving SIF emission and its radiative transfer to remote sensing sensors is an essential prerequisite for data assimilation. Recently, SIF simulations have been incorporated into several land surface models, but the scaling of SIF from leaf‐level to canopy‐level is usually not well‐represented. Here, we incorporate the simulation of far‐red SIF observed at nadir into the Community Land Model version 5 (CLM5). Leaf‐level fluorescence yield was simulated by a parametric simplification of the Soil Canopy‐Observation of Photosynthesis and Energy fluxes model (SCOPE). And an efficient and accurate method based on escape probability is developed to scale SIF from leaf‐level to top‐of‐canopy while taking clumping and the radiative transfer processes into account. SIF simulated by CLM5 and SCOPE agreed well at sites except one in needleleaf forest (R2 > 0.91, root‐mean‐square error <0.19 W⋅m−2⋅sr−1⋅μm−1), and captured the day‐to‐day variation of tower‐measured SIF at temperate forest sites (R2 > 0.68). At the global scale, simulated SIF generally captured the spatial and seasonal patterns of satellite‐observed SIF. Factors including the fluorescence emission model, clumping, bidirectional effect, and leaf optical properties had considerable impacts on SIF simulation, and the discrepancies between simulate d and observed SIF varied with plant functional type. By improving the representation of radiative transfer for SIF simulation, our model allows better comparisons between simulated and observed SIF toward constraining GPP simulations.more » « less