skip to main content

Search for: All records

Creators/Authors contains: "Shi, Xiaofei"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Shock waves are sites of intense plasma heating and charged particle acceleration. In collisionless solar wind plasmas, such acceleration is attributed to shock drift or Fermi acceleration but also to wave–particle resonant interactions. We examine the latter for the case of electrons interacting with one of the most commonly observed wave modes in shock environments, the whistler mode. Such waves are particularly intense in dynamic, localized regions upstream of shocks, arising from the kinetic interaction of the shock with solar wind discontinuities. These regions, known as foreshock transients, are also sites of significant electron acceleration by mechanisms not fully understood. Using in situ observations of such transients in the Earth’s foreshock, we demonstrate that intense whistler-mode waves can resonate nonlinearly with >25 eV solar wind electrons and accelerate them to ∼100–500 eV. This acceleration is mostly effective for the 50–250 eV energy range, where the accelerated electron population exhibits a characteristic butterfly pitch-angle distribution consistent with theoretical predictions. Such nonlinear resonant acceleration is very fast, implying that this mechanism may be important for injecting suprathermal electrons of solar wind origin into the shock region, where they can undergo further, efficient shock-drift acceleration to even higher energies.

    more » « less
  2. Abstract

    Electromagnetic ion cyclotron (EMIC) waves are a key plasma mode affecting radiation belt dynamics. These waves are important for relativistic electron losses through scattering and precipitation into Earth's ionosphere. Although theoretical models of such resonant scattering predict a low‐energy cut‐off of ∼1 MeV for precipitating electrons, observations from low‐altitude spacecraft often show simultaneous relativistic and sub‐relativistic electron precipitation associated with EMIC waves. Recently, nonresonant electron scattering by EMIC waves has been proposed as a possible solution to the above discrepancy. We employ this model and a large database of EMIC waves to develop a universal treatment of electron interactions with EMIC waves, including nonresonant effects. We use the Green's function approach to generalize EMIC diffusion rates foregoing the need to modify existing codes or recompute empirical wave databases. Comparison with observations from the electron losses and fields investigation mission demonstrates the efficacy of the proposed method for explaining sub‐relativistic electron losses by EMIC waves.

    more » « less
  3. Accepted, not yet published 
    more » « less
  4. Abstract

    Thermalization and heating of plasma flows at shocks result in unstable charged-particle distributions that generate a wide range of electromagnetic waves. These waves, in turn, can further accelerate and scatter energetic particles. Thus, the properties of the waves and their implication for wave−particle interactions are critically important for modeling energetic particle dynamics in shock environments. Whistler-mode waves, excited by the electron heat flux or a temperature anisotropy, arise naturally near shocks and foreshock transients. As a result, they can often interact with suprathermal electrons. The low background magnetic field typical at the core of such transients and the large wave amplitudes may cause such interactions to enter the nonlinear regime. In this study, we present a statistical characterization of whistler-mode waves at foreshock transients around Earth’s bow shock, as they are observed under a wide range of upstream conditions. We find that a significant portion of them are sufficiently intense and coherent (narrowband) to warrant nonlinear treatment. Copious observations of background magnetic field gradients and intense whistler wave amplitudes suggest that phase trapping, a very effective mechanism for electron acceleration in inhomogeneous plasmas, may be the cause. We discuss the implications of our findings for electron acceleration in planetary and astrophysical shock environments.

    more » « less
  5. Abstract

    Electromagnetic ion cyclotron (EMIC) waves lead to rapid scattering of relativistic electrons in Earth's radiation belts, due to their large amplitudes relative to other waves that interact with electrons of this energy range. A central feature of electron precipitation driven by EMIC waves is deeply elusive. That is, moderate precipitating fluxes at energies below the minimum resonance energy of EMIC waves occur concurrently with strong precipitating fluxes at resonance energies in low‐altitude spacecraft observations. This paper expands on a previously reported solution to this problem: nonresonant scattering due to wave packets. The quasi‐linear diffusion model is generalized to incorporate nonresonant scattering by a generic wave shape. The diffusion rate decays exponentially away from the resonance, where shorter packets lower decay rates and thus widen the energy range of significant scattering. Using realistic EMIC wave packets fromδfparticle‐in‐cell simulations, test particle simulations are performed to demonstrate that intense, short packets extend the energy of significant scattering well below the minimum resonance energy, consistent with our theoretical prediction. Finally, the calculated precipitating‐to‐trapped flux ratio of relativistic electrons is compared to ELFIN observations, and the wave power spectra is inferred based on the measured flux ratio. We demonstrate that even with a narrow wave spectrum, short EMIC wave packets can provide moderately intense precipitating fluxes well below the minimum resonance energy.

    more » « less
  6. Abstract

    Resonant interactions between relativistic electrons and electromagnetic ion cyclotron (EMIC) waves provide an effective loss mechanism for this important electron population in the outer radiation belt. The diffusive regime of electron scattering and loss has been well incorporated into radiation belt models within the framework of the quasi‐linear diffusion theory, whereas the nonlinear regime has been mostly studied with test particle simulations. There is also a less investigated, nonresonant regime of electron scattering by EMIC waves. All three regimes should be present, depending on the EMIC waves and ambient plasma properties, but the occurrence rates of these regimes have not been previously quantified. This study provides a statistical investigation of the most important EMIC wave‐packet characteristics for the diffusive, nonlinear, and nonresonant regimes of electron scattering. We utilize 3 years of observations to derive distributions of wave amplitudes, wave‐packet sizes, and rates of frequency variations within individual wave‐packets. We demonstrate that EMIC waves typically propagate as wave‐packets with ∼10 wave periods each, and that ∼3–10% of such wave‐packets can reach the regime of nonlinear resonant interaction with 2–6 MeV electrons. We show that EMIC frequency variations within wave‐packets reach 50–100% of the center frequency, corresponding to a significant high‐frequency tail in their wave power spectrum. We explore the consequences of these wave‐packet characteristics for high and low energy electron precipitation by H‐band EMIC waves and for the relative importance of quasi‐linear and nonlinear regimes of wave‐particle interactions.

    more » « less
  7. Abstract

    Earth's foreshock is filled with backstreaming particles that can generate a variety of waves and foreshock transients. According to recent studies, these particles can be further accelerated while being scattered by field fluctuations, including waves, inside foreshock transients, contributing to particle acceleration at the parent bow shock. The properties of these waves and how they interact with particles and affect particle acceleration inside foreshock transients are still unclear, however. Here we take the first step to study one important type of these waves, whistler waves. We use Time History of Events and Macroscale Interactions during Substorms (THEMIS) observations and employ multiple case studies to investigate the properties of whistler waves in the compressional boundaries of foreshock transients where THEMIS wave burst mode is triggered. We show that the whistler waves are quasi parallel propagating with bidirectional Poynting vectors, suggesting that they are locally generated. We focus on how they interact with electrons. We show that the diffusion surfaces for these waves in the electron velocity space match the observed electron phase space density distribution contours better when the modeled pitch angle diffusion coefficients from these waves are higher. We also demonstrate that higher‐energy electrons are more likely to be scattered by whistler waves. Our results suggest that whistler waves are important for scattering tens to hundreds of electronvolt electrons inside foreshock transients and elucidate electron dynamics and whistler wave properties in such environments.

    more » « less