Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Free, publicly-accessible full text available September 23, 2026
- 
            Free, publicly-accessible full text available July 1, 2026
- 
            Semiconductor moiré superlattices, characterized by their periodic spatial light emission, unveil a new paradigm of engineered photonic materials. Here, we show that ferroelectric moiré domains formed in a twisted hexagonal boron nitride (t-hBN) substrate can modulate light emission from an adjacent semiconductor MoSe2monolayer. The electrostatic potential at the surface of the t-hBN substrate provides a simple way to confine excitons in the MoSe2monolayer. The excitons confined within the domains and at the domain walls are spectrally separated because of a pronounced Stark shift. Moreover, the patterned light emission can be dynamically controlled by electrically gating the ferroelectric domains, introducing a functionality beyond other semiconductor moiré superlattices. Our findings chart an exciting pathway for integrating nanometer-scale moiré ferroelectric domains with various optically active functional layers, paving the way for advanced nanophotonics and metasurfaces.more » « lessFree, publicly-accessible full text available May 9, 2026
- 
            Free, publicly-accessible full text available May 1, 2026
- 
            Free, publicly-accessible full text available July 1, 2026
- 
            In intrinsic magnetic topological insulators, Dirac surface-state gaps are prerequisites for quantum anomalous Hall and axion insulating states. Unambiguous experimental identification of these gaps has proved to be a challenge, however. Here, we use molecular beam epitaxy to grow intrinsic MnBi 2 Te 4 thin films. Using scanning tunneling microscopy/spectroscopy, we directly visualize the Dirac mass gap and its disappearance below and above the magnetic order temperature. We further reveal the interplay of Dirac mass gaps and local magnetic defects. We find that, in high defect regions, the Dirac mass gap collapses. Ab initio and coupled Dirac cone model calculations provide insight into the microscopic origin of the correlation between defect density and spatial gap variations. This work provides unambiguous identification of the Dirac mass gap in MnBi 2 Te 4 and, by revealing the microscopic origin of its gap variation, establishes a material design principle for realizing exotic states in intrinsic magnetic topological insulators.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
