skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Shim, Sang-Heon"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Ultra‐low velocity zones (ULVZs) are anomalous structures, generally associated with decreased seismic velocity and sometimes an increase in density, that have been detected in some locations atop the Earth's core‐mantle boundary (CMB). A wide range of ULVZ characteristics have been reported by previous studies, leading to many questions regarding their origins. The lowermost mantle beneath Antarctica and surrounding areas is not located near currently active regions of mantle upwelling or downwelling, making it a unique environment in which to study the sources of ULVZs; however, seismic sampling of this portion of the CMB has been sparse. Here, we examine core‐reflected PcP waveforms recorded by seismic stations across Antarctica using a double‐array stacking technique to further elucidate ULVZ structure beneath the southern hemisphere. Our results show widespread, variable ULVZs, some of which can be robustly modeled with 1‐D synthetics; however, others are more complex, which may reflect 2‐D or 3‐D ULVZ structure and/or ULVZs with internal velocity variability. Our findings are consistent with the concept that ULVZs can be largely explained by variable accumulations of subducted oceanic crust along the CMB. Partial melting of subducted crust and other, hydrous subducted materials may also contribute to ULVZ variability. 
    more » « less
  2. Free, publicly-accessible full text available December 1, 2025
  3. Many sub-Neptune exoplanets have been believed to be composed of a thick hydrogen-dominated atmosphere and a high-temperature heavier-element-dominant core. From an assumption that there is no chemical reaction between hydrogen and silicates/metals at the atmosphere–interior boundary, the cores of sub-Neptunes have been modeled with molten silicates and metals (magma) in previous studies. In large sub-Neptunes, pressure at the atmosphere–magma boundary can reach tens of gigapascals where hydrogen is a dense liquid. A recent experiment showed that hydrogen can induce the reduction of Fe 2 + in (Mg,Fe)O to Fe 0 metal at the pressure–temperature conditions relevant to the atmosphere–interior boundary. However, it is unclear whether Mg, one of the abundant heavy elements in the planetary interiors, remains oxidized or can be reduced by H. Our experiments in the laser-heated diamond-anvil cell found that heating of MgO + Fe to 3,500 to 4,900 K (close to or above their melting temperatures) in an H medium leads to the formation of Mg 2 FeH 6 and H 2 O at 8 to 13 GPa. At 26 to 29 GPa, the behavior of the system changes, and Mg–H in an H fluid and H 2 O were detected with separate FeH x . The observations indicate the dissociation of the Mg–O bond by H and subsequent production of hydride and water. Therefore, the atmosphere–magma interaction can lead to a fundamentally different mineralogy for sub-Neptune exoplanets compared with rocky planets. The change in the chemical reaction at the higher pressures can also affect the size demographics (i.e., “radius cliff”) and the atmosphere chemistry of sub-Neptune exoplanets. 
    more » « less
  4. unknown (Ed.)
    The Earth’s core–mantle boundary presents a dramatic change in materials, from silicate to metal. While little is known about chemical interactions between them, a thin layer with a lower velocity has been proposed at the topmost outer core (Eʹ layer) that is difficult to explain with a change in concentration of a single light element. Here we perform high-temperature and -pressure laser-heated diamond-anvil cell experiments and report the formation of SiO2 and FeHx from a reaction between water from hydrous minerals and Fe–Si alloys at the pressure–temperature conditions relevant to the Earth’s core–mantle boundary. We suggest that, if water has been delivered to the core–mantle boundary by subduction, this reaction could enable exchange of hydrogen and silicon between the mantle and the core. The resulting H-rich, Si-deficient layer formed at the topmost core would have a lower density, stabilizing chemical stratification at the top of the core, and a lower velocity. We suggest that such chemical exchange between the core and mantle over gigayears of deep transport of water may have contributed to the formation of the putative Eʹ layer. 
    more » « less
  5. Anomalies along Earth’s core can be explained by former oceanic seafloor that descended 3000 km to the base of the mantle. 
    more » « less
  6. The spin state of Fe can alter the key physical properties of silicate melts, affecting the early differentiation and the dynamic stability of the melts in the deep rocky planets. The low-spin state of Fe can increase the affinity of Fe for the melt over the solid phases and the electrical conductivity of melt at high pressures. However, the spin state of Fe has never been measured in dense silicate melts due to experimental challenges. We report detection of dominantly low-spin Fe in dynamically compressed olivine melt at 150 to 256 gigapascals and 3000 to 6000 kelvin using laser-driven shock wave compression combined with femtosecond x-ray diffraction and x-ray emission spectroscopy using an x-ray free electron laser. The observation of dominantly low-spin Fe supports gravitationally stable melt in the deep mantle and generation of a dynamo from the silicate melt portion of rocky planets. 
    more » « less
  7. Abstract While the water storage capacities of the upper 700 km depths of the mantle have been constrained by high-pressure experiments and diamond inclusion studies, the storage capacity of the lower mantle remains controversial. A recent high-pressure experimental study on CaSiO3 perovskite, which is the third most abundant mineral in the lower mantle, reported possible storage of H2O up to a few weight percent. However, the substitution mechanism for H in this phase remains unknown. We have conducted a series of density functional theory calculations under static-lattice conditions and high pressures to elucidate hydration mechanisms at the atomic scale. All of the possible dodecahedral (Ca2+ → 2H+) and octahedral (Si4+ → 4H+) substitution configurations for a tetragonal perovskite lattice have very small energy differences, suggesting the coexistence of multiples of H configurations in CaSiO3 perovskite at mantle pressures and temperatures. The dodecahedral substitutions decrease the bulk modulus, resulting in a smaller unit-cell volume of hydrous CaSiO3 perovskite under pressure, consistent with the experimental observations. Although the octahedral substitutions also decrease the bulk modulus, they increase the unit-cell volume at 1 bar. The H atoms substituted in the dodecahedral sites develop much less hydrogen bonding with O atoms, leading to a large distortion in the neighboring SiO6 octahedra. Such distortion may be responsible for the non-cubic peak splittings observed in experiments on hydrous CaSiO3 perovskite. Our calculated infrared spectra suggest that the observed broad OH modes in CaSiO3 perovskite can result from the existence of multiples of H configurations in the phase. Combined with the recent experimental results, our study suggests that CaSiO3 can be an important mineral phase to consider for the H2O storage in the lower mantle. 
    more » « less