skip to main content


Search for: All records

Creators/Authors contains: "Shin, Youngsu"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    In this study, poly(ethylene terephthalate)‐block‐polyethylene (PET‐PE) multiblock copolymers (MBCPs) with block molar masses of ~4 or 7 kg mol−1and either alternating or random block sequencing, and a PE‐PET‐PE triblock copolymer (TBCP) of comparable total molar mass, were synthesized. To explore the effect of molecular architecture on compatibilization, both MBCPs and TBCPs were blended into 80/20 wt/wt mixtures of PET/linear low‐density PE (LLDPE). Compatibilization was remarkably efficient for all MBCP types, with the addition of 0.2 wt% yielding blends nearly as tough as PET homopolymer. Addition of MBCP also significantly decreases LLDPE dispersed phase sizes compared to PET/LLDPE neat blends, as much as 80% in as‐mixed blends and by a factor of 10 in post‐mixing thermally annealed samples. Conversely, the TBCP was less efficient at decreasing domain sizes of the blends and improving the mechanical properties, requiring loadings of 1 wt% to produce comparably tough blends. Peel tests of PET/BCP/LLDPE trilayer films showed that both MBCPs and TBCP all improve interfacial strength over a PET‐PE bilayer film by two orders of magnitude; however, when the BCPs were preloaded into LLDPE, only the MBCP containing films showed strong adhesion highlighting their potential utility as adhesive agents in multilayer films.

     
    more » « less
  2. null (Ed.)