skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, July 11 until 2:00 AM ET on Saturday, July 12 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Shintre, Pallavi"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. As humans and robots start to collaborate in close proximity, robots are tasked to perceive, comprehend, and anticipate human partners' actions, which demands a predictive model to describe how humans collaborate with each other in joint actions. Previous studies either simplify the collaborative task as an optimal control problem between two agents or do not consider the learning process of humans during repeated interaction. This idyllic representation is thus not able to model human rationality and the learning process. In this paper, a bounded-rational and game-theoretical human cooperative model is developed to describe the cooperative behaviors of the human dyad. An experiment of a joint object pushing collaborative task was conducted with 30 human subjects using haptic interfaces in a virtual environment. The proposed model uses inverse optimal control (IOC) to model the reward parameters in the collaborative task. The collected data verified the accuracy of the predicted human trajectory generated from the bounded rational model excels the one with a fully rational model. We further provide insight from the conducted experiments about the effects of leadership on the performance of human collaboration. 
    more » « less