- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources4
- Resource Type
-
0000000004000000
- More
- Availability
-
40
- Author / Contributor
- Filter by Author / Creator
-
-
Shlapentokh, Alexandra (4)
-
Calvert, Wesley (2)
-
Harizanov, Valentina (2)
-
Mazur, Barry (2)
-
Rubin, Karl (2)
-
Omodeo, Eugenio G (1)
-
Policriti, Alberto (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract We introduce a notion of algorithmic randomness for algebraic fields. We prove the existence of a continuum of algebraic extensions of that are random according to our definition. We show that there are noncomputable algebraic fields which are not random. We also partially characterize the index set, relative to an oracle, of the set of random algebraic fields computable relative to that oracle. In order to carry out this investigation of randomness for fields, we develop computability in the context of the infinite Galois theory (where the relevant Galois groups are uncountable), including definitions of computable and computably enumerable Galois groups and computability of Haar measure on the Galois groups.more » « less
-
Calvert, Wesley; Harizanov, Valentina; Omodeo, Eugenio G; Policriti, Alberto; Shlapentokh, Alexandra (, Notices of the American Mathematical Society)
-
Mazur, Barry; Rubin, Karl; Shlapentokh, Alexandra (, Journal of Number Theory)
-
Mazur, Barry; Rubin, Karl; Shlapentokh, Alexandra (, Acta Arithmetica)We consider first-order definability and decidability questions over rings of integers of algebraic extensions of $$\Q$$, paying attention to the uniformity of definitions. The uniformity follows from the simplicity of our first-order definition of $$\Z$$. Namely, we prove that for a large collection of algebraic extensions $$K/\Q$$, $$ \{x \in \oo_K : \text{$$\forall \e \in \oo_K^\times \;\exists \delta \in \oo_K^\times$ such that $$\delta-1 \equiv (\e-1)x \pmod{(\e-1)^2}$$}\} = \Z $$ where $$\oo_K$$ denotes the ring of integers of $$K$$. One of the corollaries of our results is undecidability of the field of constructible numbers, a question posed by Tarski in 1948. \end{abstract}more » « less
An official website of the United States government
