skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Defining $\mathbb Z$ using unit groups
We consider first-order definability and decidability questions over rings of integers of algebraic extensions of $$\Q$$, paying attention to the uniformity of definitions. The uniformity follows from the simplicity of our first-order definition of $$\Z$$. Namely, we prove that for a large collection of algebraic extensions $$K/\Q$$, $$ \{x \in \oo_K : \text{$$\forall \e \in \oo_K^\times \;\exists \delta \in \oo_K^\times$ such that $$\delta-1 \equiv (\e-1)x \pmod{(\e-1)^2}$$}\} = \Z $$ where $$\oo_K$$ denotes the ring of integers of $$K$$. One of the corollaries of our results is undecidability of the field of constructible numbers, a question posed by Tarski in 1948. \end{abstract}  more » « less
Award ID(s):
2152098 2152262
PAR ID:
10590004
Author(s) / Creator(s):
; ;
Publisher / Repository:
Instytut Matematyczny Polskiej Akademii Nauk
Date Published:
Journal Name:
Acta Arithmetica
Volume:
214
ISSN:
0065-1036
Page Range / eLocation ID:
235 to 255
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Let E E be an elliptic curve over Q \mathbb {Q} with Mordell–Weil rank 2 2 and p p be an odd prime of good ordinary reduction. For every imaginary quadratic field K K satisfying the Heegner hypothesis, there is (subject to the Shafarevich–Tate conjecture) a line, i.e., a free Z p \mathbb {Z}_p -submodule of rank 1 1 , in E ( K ) ⊗<#comment/> Z p E(K)\otimes \mathbb {Z}_p given by universal norms coming from the Mordell–Weil groups of subfields of the anticyclotomic Z p \mathbb {Z}_p -extension of K K ; we call it theshadow line. When the twist of E E by K K has analytic rank 1 1 , the shadow line is conjectured to lie in E ( Q ) ⊗<#comment/> Z p E(\mathbb {Q})\otimes \mathbb {Z}_p ; we verify this computationally in all our examples. We study the distribution of shadow lines in E ( Q ) ⊗<#comment/> Z p E(\mathbb {Q})\otimes \mathbb {Z}_p as K K varies, framing conjectures based on the computations we have made. 
    more » « less
  2. Let $$\R$$ be a real closed field and $$\C$$ the algebraic closure of $$\R$$. We give an algorithm for computing a semi-algebraic basis for the first homology group, $$\HH_1(S,\mathbb{F})$$, with coefficients in a field $$\FF$$, of any given semi-algebraic set $$S \subset \R^k$$ defined by a closed formula. The complexity of the algorithm is bounded singly exponentially. More precisely, if the given quantifier-free formula involves $$s$$ polynomials whose degrees are bounded by $$d$$, the complexity of the algorithm is bounded by $$(s d)^{k^{O(1)}}$$. This algorithm generalizes well known algorithms having singly exponential complexity for computing a semi-algebraic basis of the zero-th homology group of semi-algebraic sets, which is equivalent to the problem of computing a set of points meeting every semi-algebraically connected component of the given semi-algebraic set at a unique point. It is not known how to compute such a basis for the higher homology groups with singly exponential complexity. As an intermediate step in our algorithm we construct a semi-algebraic subset $$\Gamma$$ of the given semi-algebraic set $$S$$, such that $$\HH_q(S,\Gamma) = 0$$ for $q=0,1$. We relate this construction to a basic theorem in complex algebraic geometry stating that for any affine variety $$X$$ of dimension $$n$$, there exists Zariski closed subsets \[ Z^{(n-1)} \supset \cdots \supset Z^{(1)} \supset Z^{(0)} \] with $$\dim_\C Z^{(i)} \leq i$, and $$\HH_q(X,Z^{(i)}) = 0$$ for $$0 \leq q \leq i$$. We conjecture a quantitative version of this result in the semi-algebraic category, with $$X$$ and $$Z^{(i)}$$ replaced by closed semi-algebraic sets. We make initial progress on this conjecture by proving the existence of $$Z^{(0)}$$ and $$Z^{(1)}$$ with complexity bounded singly exponentially (previously, such an algorithm was known only for constructing $$Z^{(0)}$$). 
    more » « less
  3. abstract: We examine caloric measures $$\omega$$ on general domains in $$\RR^{n+1}=\RR^n\times\RR$$ (space $$\times$$ time) from the perspective of geometric measure theory. On one hand, we give a direct proof of a consequence of a theorem of Taylor and Watson (1985) that the lower parabolic Hausdorff dimension of $$\omega$$ is at least $$n$$ and $$\omega\ll\Haus^n$$. On the other hand, we prove that the upper parabolic Hausdorff dimension of $$\omega$$ is at most $$n+2-\beta_n$$, where $$\beta_n>0$$ depends only on $$n$$. Analogous bounds for harmonic measures were first shown by Nevanlinna (1934) and Bourgain (1987). Heuristically, we show that the \emph{density} of obstacles in a cube needed to make it unlikely that a Brownian motion started outside of the cube exits a domain near the center of the cube must be chosen according to the ambient dimension. In the course of the proof, we give a caloric measure analogue of Bourgain's alternative: for any constants $$0<\epsilon\ll_n \delta<1/2$ and closed set $$E\subset\RR^{n+1}$$, either (i) $$E\cap Q$$ has relatively large caloric measure in $$Q\setminus E$$ for every pole in $$F$$ or (ii) $$E\cap Q_*$$ has relatively small $$\rho$$-dimensional parabolic Hausdorff content for every $$n<\rho\leq n+2$$, where $$Q$$ is a cube, $$F$$ is a subcube of $$Q$$ aligned at the center of the top time-face, and $$Q_*$$ is a subcube of $$Q$$ that is close to, but separated backwards-in-time from $$F$$: \begin{gather*} Q=(-1/2,1/2)^n\times (-1,0),\quad F=[-1/2+\delta,1/2-\delta]^n\times[-\epsilon^2,0),\\[2pt] \text{and }Q_*=[-1/2+\delta,1/2-\delta]^n\times[-3\epsilon^2,-2\epsilon^2]. \end{gather*} Further, we supply a version of the strong Markov property for caloric measures. 
    more » « less
  4. Abstract: We consider the quadratic Zakharov-Kuznetsov equation $$\partial_t u + \partial_x \Delta u + \partial_x u^2=0$$ on $$\Bbb{R}^3$$. A solitary wave solution is given by $Q(x-t,y,z)$, where $$Q$$ is the ground state solution to $$-Q+\Delta Q+Q^2=0$$. We prove the asymptotic stability of these solitary wave solutions. Specifically, we show that initial data close to $$Q$$ in the energy space, evolves to a solution that, as $$t\to\infty$$, converges to a rescaling and shift of $Q(x-t,y,z)$ in $L^2$ in a rightward shifting region $$x>\delta t-\tan\theta\sqrt{y^2+z^2}$$ for $$0\leq\theta\leq{\pi\over 3}-\delta$$. 
    more » « less
  5. Abstract For a smooth projective varietyXover an algebraic number fieldka conjecture of Bloch and Beilinson predicts that the kernel of the Albanese map ofXis a torsion group. In this article we consider a product$$X=C_1\times \cdots \times C_d$$ X = C 1 × × C d of smooth projective curves and show that if the conjecture is true for any subproduct of two curves, then it is true forX. For a product$$X=C_1\times C_2$$ X = C 1 × C 2 of two curves over$$\mathbb {Q} $$ Q with positive genus we construct many nontrivial examples that satisfy the weaker property that the image of the natural map$$J_1(\mathbb {Q})\otimes J_2(\mathbb {Q})\xrightarrow {\varepsilon }{{\,\textrm{CH}\,}}_0(C_1\times C_2)$$ J 1 ( Q ) J 2 ( Q ) ε CH 0 ( C 1 × C 2 ) is finite, where$$J_i$$ J i is the Jacobian variety of$$C_i$$ C i . Our constructions include many new examples of non-isogenous pairs of elliptic curves$$E_1, E_2$$ E 1 , E 2 with positive rank, including the first known examples of rank greater than 1. Combining these constructions with our previous result, we obtain infinitely many nontrivial products$$X=C_1\times \cdots \times C_d$$ X = C 1 × × C d for which the analogous map$$\varepsilon $$ ε has finite image. 
    more » « less