skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Shrestha, Nischal"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Once a programmer knows one language, they can leverage concepts and knowledge already learned, and easily pick up another programming language. But is that always the case? To understand if programmers have difficulty learning additional programming languages, we conducted an empirical study of Stack Overflow questions across 18 different programming languages. We hypothesized that previous knowledge could potentially interfere with learning a new programming language. From our inspection of 450 Stack Overflow questions, we found 276 instances of interference that occurred due to faulty assumptions originating from knowledge about a different language. To understand why these difficulties occurred, we conducted semi-structured interviews with 16 professional programmers. The interviews revealed that programmers make failed attempts to relate a new programming language with what they already know. Our findings inform design implications for technical authors, toolsmiths, and language designers, such as designing documentation and automated tools that reduce interference, anticipating uncommon language transitions during language design, and welcoming programmers not just into a language, but its entire ecosystem. 
    more » « less
  2. Programmers are expected to use multiple programming languages frequently. Studies have found that programmers try to reuse existing knowledge from their previous languages. However, this strategy can result in misconceptions from previous languages. Current learning resources that support the strategy are limited because there is no systematic way to produce or validate the material. We designed three instruments that can help identify and validate meaningful behavior differences between two languages to pinpoint potential misconceptions. To validate the instruments, we examined how Python programmers predict behavior in a less familiar language like R, and whether they expect various R semantics. We found that the instruments are effective in validating differences between Python and R which were linked to misconceptions. We discuss design trade-offs between the three instruments and provide guidelines for researchers and educators in systematically validating programming misconceptions when switching to a new language. 
    more » « less
  3. Expertise in programming traditionally assumes a binary novice-expert divide. Learning resources typically target programmers who are learning programming for the first time, or expert programmers for that language. An underrepresented, yet important group of programmers are those that are experienced in one programming language, but desire to author code in a different language. For this scenario, we postulate that an effective form of feedback is presented as a transfer from concepts in the first language to the second. Current programming environments do not support this form of feedback. In this study, we apply the theory of learning transfer to teach a language that programmers are less familiar with-such as R-in terms of a programming language they already know-such as Python. We investigate learning transfer using a new tool called Transfer Tutor that presents explanations for R code in terms of the equivalent Python code. Our study found that participants leveraged learning transfer as a cognitive strategy, even when unprompted. Participants found Transfer Tutor to be useful across a number of affordances like stepping through and highlighting facts that may have been missed or misunderstood. However, participants were reluctant to accept facts without code execution or sometimes had difficulty reading explanations that are verbose or complex. These results provide guidance for future designs and research directions that can support learning transfer when learning new programming languages. 
    more » « less
  4. Regular expressions are frequently found in programming projects. Studies have found that developers can accurately determine whether a string matches a regular expression. However, we still do not know the challenges associated with composing regular expressions. We conduct an exploratory case study to reveal the tools and strategies developers use during regular expression composition. In this study, 29 students are tasked with composing regular expressions that pass unit tests illustrating the intended behavior. The tasks are in Java and the Eclipse IDE was set up with JUnit tests. Participants had one hour to work and could use any Eclipse tools, web search, or web-based tools they desired. Screen- capture software recorded all interactions with browsers and the IDE. We analyzed the videos quantitatively by transcribing logs and extracting personas. Our results show that participants were 30% successful (28 of 94 attempts) at achieving a 100% pass rate on the unit tests. When participants used tools frequently, as in the case of the novice tester and the knowledgeable tester personas, or when they guess at a solution prior to searching, they are more likely to pass all the unit tests. We also found that compile errors often arise when participants searched for a result and copy/pasted the regular expression from another language into their Java files. These results point to future research into making regular expression composition easier for programmers, such as integrating visualization into the IDE to reduce context switching or providing language migration support when reusing regular expressions written in another language to reduce compile errors. 
    more » « less