skip to main content


Search for: All records

Creators/Authors contains: "Siana, Brian"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    We use the large spectroscopic data set of the MOSFIRE Deep Evolution Field survey to investigate the kinematics and energetics of ionized gas outflows. Using a sample of 598 star-forming galaxies at redshift 1.4 < z < 3.8, we decompose [O iii] and $\rm {H}\,\alpha$ emission lines into narrow and broad components, finding significant detections of broad components in 10 per cent of the sample. The ionized outflow velocity from individual galaxies appears independent of galaxy properties, such as stellar mass, star formation rate (SFR), and SFR surface density (ΣSFR). Adopting a simple outflow model, we estimate the mass-, energy-, and momentum-loading factors of the ionized outflows, finding modest values with averages of 0.33, 0.04, and 0.22, respectively. The larger momentum- than energy-loading factors, for the adopted physical parameters, imply that these ionized outflows are primarily momentum driven. We further find a marginal correlation (2.5σ) between the mass-loading factor and stellar mass in agreement with predictions by simulations, scaling as ηm$\propto M_{\star }^{-0.45}$. This shallow scaling relation is consistent with these ionized outflows being driven by a combination of mechanical energy generated by supernovae explosions and radiation pressure acting on dusty material. In a majority of galaxies, the outflowing material does not appear to have sufficient velocity to escape the gravitational potential of their host, likely recycling back at later times. Together, these results suggest that the ionized outflows traced by nebular emission lines are negligible, with the bulk of mass and energy carried out in other gaseous phases.

     
    more » « less
  2. ABSTRACT

    We report on the discovery of cool gas inflows towards three star-forming galaxies at <z> ∼ 2.30. Analysis of Keck Low-Resolution Imaging Spectrometer spectroscopy reveals redshifted low-ionization interstellar (LIS) metal absorption lines with centroid velocities of 60–130 km s−1. These inflows represent some of the most robust detections of inflowing gas into isolated, star-forming galaxies at high redshift. Our analysis suggests that the inflows are due to recycling metal-enriched gas from previous ejections. Comparisons between the galaxies with inflows and a larger parent sample of 131 objects indicate that galaxies with detected inflows may have higher specific star formation rates (sSFRs) and star-formation-rate surface densities (ΣSFR). However, when additional galaxies without robustly detected inflows based on centroid velocity but whose LIS absorption line profiles indicate large red-wing velocities are considered, galaxies with inflows do not show unique properties relative to those lacking inflows. Additionally, we calculate the covering fraction of cool inflowing gas as a function of red-wing inflow velocity, finding an enhancement in high-sSFR binned galaxies, likely due to an increase in the amount of recycling gas. Together, these results suggest that the low detection rate of galaxies with cool inflows is primarily related to the viewing angle rather than the physical properties of the galaxies.

     
    more » « less
  3. Abstract

    We use the large spectroscopic data set of the MOSFIRE Deep Evolution Field survey to investigate some of the key factors responsible for the elevated ionization parameters (U) inferred for high-redshift galaxies, focusing in particular on the role of star-formation-rate surface density (ΣSFR). Using a sample of 317 galaxies with spectroscopic redshiftszspec≃ 1.9–3.7, we construct composite rest-frame optical spectra in bins of ΣSFRand infer electron densities,ne, using the ratio of the [Oii]λλ3727, 3730 doublet. Our analysis suggests a significant (≃3σ) correlation betweenneand ΣSFR. We further find significant correlations betweenUand ΣSFRfor composite spectra of a subsample of 113 galaxies, and for a smaller sample of 25 individual galaxies with inferences ofU. The increase inne—and possibly also the volume filling factor of dense clumps in Hiiregions—with ΣSFRappear to be important factors in explaining the relationship betweenUand ΣSFR. Further, the increase inneand SFR with redshift at a fixed stellar mass can account for most of the redshift evolution ofU. These results suggest that the gas density, which setsneand the overall level of star formation activity, may play a more important role than metallicity evolution in explaining the elevated ionization parameters of high-redshift galaxies.

     
    more » « less
  4. Abstract

    We present a Keck/MOSFIRE rest-optical composite spectrum of 16 typical gravitationally lensed star-forming dwarf galaxies at 1.7 ≲z≲ 2.6 (zmean= 2.30), all chosen independent of emission-line strength. These galaxies have a median stellar mass oflog(M*/M)med=8.290.43+0.51and a median star formation rate ofSFRHαmed=2.251.26+2.15Myr1. We measure the faint electron-temperature-sensitive [Oiii]λ4363 emission line at 2.5σ(4.1σ) significance when considering a bootstrapped (statistical-only) uncertainty spectrum. This yields a direct-method oxygen abundance of12+log(O/H)direct=7.880.22+0.25(0.150.06+0.12Z). We investigate the applicability at highzof locally calibrated oxygen-based strong-line metallicity relations, finding that the local reference calibrations of Bian et al. best reproduce (≲0.12 dex) our composite metallicity at fixed strong-line ratio. At fixedM*, our composite is well represented by thez∼ 2.3 direct-method stellar mass—gas-phase metallicity relation (MZR) of Sanders et al. When comparing to predicted MZRs from the IllustrisTNG and FIRE simulations, having recalculated our stellar masses with more realistic nonparametric star formation histories(log(M*/M)med=8.920.22+0.31), we find excellent agreement with the FIRE MZR. Our composite is consistent with no metallicity evolution, at fixedM*and SFR, of the locally defined fundamental metallicity relation. We measure the doublet ratio [Oii]λ3729/[Oii]λ3726 = 1.56 ± 0.32 (1.51 ± 0.12) and a corresponding electron density ofne=10+215cm3(ne=10+74cm3) when considering the bootstrapped (statistical-only) error spectrum. This result suggests that lower-mass galaxies have lower densities than higher-mass galaxies atz∼ 2.

     
    more » « less
  5. Abstract We present observations of CO(3−2) in 13 main-sequence z = 2.0–2.5 star-forming galaxies at log ( M * / M ⊙ ) = 10.2 – 10.6 that span a wide range in metallicity (O/H) based on rest-optical spectroscopy. We find that L CO ( 3 − 2 ) ′ /SFR decreases with decreasing metallicity, implying that the CO luminosity per unit gas mass is lower in low-metallicity galaxies at z ∼ 2. We constrain the CO-to-H 2 conversion factor ( α CO ) and find that α CO inversely correlates with metallicity at z ∼ 2. We derive molecular gas masses ( M mol ) and characterize the relations among M * , SFR, M mol , and metallicity. At z ∼ 2, M mol increases and the molecular gas fraction ( M mol / M * ) decreases with increasing M * , with a significant secondary dependence on SFR. Galaxies at z ∼ 2 lie on a near-linear molecular KS law that is well-described by a constant depletion time of 700 Myr. We find that the scatter about the mean SFR− M * , O/H− M * , and M mol − M * relations is correlated such that, at fixed M * , z ∼ 2 galaxies with larger M mol have higher SFR and lower O/H. We thus confirm the existence of a fundamental metallicity relation at z ∼ 2, where O/H is inversely correlated with both SFR and M mol at fixed M * . These results suggest that the scatter of the z ∼ 2 star-forming main sequence, mass–metallicity relation, and M mol – M * relation are primarily driven by stochastic variations in gas inflow rates. We place constraints on the mass loading of galactic outflows and perform a metal budget analysis, finding that massive z ∼ 2 star-forming galaxies retain only 30% of metals produced, implying that a large mass of metals resides in the circumgalactic medium. 
    more » « less
  6. Abstract

    We investigate dust attenuation and its dependence on viewing angle for 308 star-forming galaxies at 1.3 ≤z≤ 2.6 from the MOSFIRE Deep Evolution Field survey. We divide galaxies with a detected Hαemission line and coverage of Hβinto eight groups by stellar mass, star formation rate (SFR), and inclination (i.e., axis ratio), and we then stack their spectra. From each stack, we measure the Balmer decrement and gas-phase metallicity, and then we compute the medianAVand UV continuum spectral slope (β). First, we find that none of the dust properties (Balmer decrement,AV, orβ) varies with the axis ratio. Second, both stellar and nebular attenuation increase with increasing galaxy mass, showing little residual dependence on SFR or metallicity. Third, nebular emission is more attenuated than stellar emission, and this difference grows even larger at higher galaxy masses and SFRs. Based on these results, we propose a three-component dust model in which attenuation predominantly occurs in star-forming regions and large, dusty star-forming clumps, with minimal attenuation in the diffuse ISM. In this model, nebular attenuation primarily originates in clumps, while stellar attenuation is dominated by star-forming regions. Clumps become larger and more common with increasing galaxy mass, creating the above mass trends. Finally, we argue that a fixed metal yield naturally leads to mass regulating dust attenuation. Infall of low-metallicity gas increases the SFR and lowers the metallicity, but leaves the dust column density mostly unchanged. We quantify this idea using the Kennicutt–Schmidt and fundamental metallicity relations, showing that galaxy mass is indeed the primary driver of dust attenuation.

     
    more » « less
  7. Abstract The UltraViolet imaging of the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey Fields (UVCANDELS) program provides Hubble Space Telescope (HST)/UVIS F275W imaging for four CANDELS fields. We combine this UV imaging with existing HST/near-IR grism spectroscopy from 3D-HST+AGHAST to directly compare the resolved rest-frame UV and H α emission for a sample of 979 galaxies at 0.7 < z < 1.5, spanning a range in stellar mass of 10 8−11.5 M ⊙ . Using a stacking analysis, we perform a resolved comparison between homogenized maps of rest-UV and H α to compute the average UV-to-H α luminosity ratio (an indicator of burstiness in star formation) as a function of galactocentric radius. We find that galaxies below stellar mass of ∼10 9.5 M ⊙ , at all radii, have a UV-to-H α ratio higher than the equilibrium value expected from constant star formation, indicating a significant contribution from bursty star formation. Even for galaxies with stellar mass ≳10 9.5 M ⊙ , the UV-to-H α ratio is elevated toward their outskirts ( R / R eff > 1.5), suggesting that bursty star formation is likely prevalent in the outskirts of even the most massive galaxies, but is likely overshadowed by their brighter cores. Furthermore, we present the UV-to-H α ratio as a function of galaxy surface brightness, a proxy for stellar mass surface density, and find that regions below ∼10 7.5 M ⊙ kpc −2 are consistent with bursty star formation, regardless of their galaxy stellar mass, potentially suggesting that local star formation is independent of global galaxy properties at the smallest scales. Last, we find galaxies at z > 1.1 to have bursty star formation, regardless of radius or surface brightness. 
    more » « less
    Free, publicly-accessible full text available July 24, 2024