Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We introduce a variant of stable logarithmic maps, which we call punctured logarith- mic maps. They allow an extension of logarithmic Gromov–Witten theory in which marked points have a negative order of tangency with boundary divisors. As a main application we develop a gluing formalism which reconstructs stable logarithmic maps and their virtual cycles without expansions of the target, with trop- ical geometry providing the underlying combinatorics. Punctured Gromov–Witten invariants also play a pivotal role in the intrinsic con- struction of mirror partners by the last two authors, conjecturally relating to symplec- tic cohomology, and in the logarithmic gauged linear sigma model in work of Qile Chen, Felix Janda and Yongbin Ruan.more » « lessFree, publicly-accessible full text available February 5, 2026
-
This paper, largely written in 2009/2010, fits Landau–Ginzburg models into the mirror symmetry program pursued by the last author jointly with Mark Gross since 2001. This point of view transparently brings in tropical disks of Maslov index 2 via the notion of broken lines, previously introduced in two dimensions by Mark Gross in his study of mirror symmetry for P2 . A major insight is the equivalence of properness of the Landau–Ginzburg potential with smoothness of the anticanonical divisor on the mirror side. We obtain proper superpotentials which agree on an open part with those classically known for toric varieties. Examples include mirror LG models for non-singular and singular del Pezzo surfaces, Hirzebruch surfaces and some Fano threefolds.more » « less
-
Abstract As announced in Gross and Siebert (in Algebraic geometry: Salt Lake City 2015, Proceedings of Symposia in Pure Mathematics, vol 97, no 2. AMS, Providence, pp 199–230, 2018) in 2016, we construct and prove consistency of the canonical wall structure . This construction starts with a log Calabi–Yau pair ( X , D ) and produces a wall structure, as defined in Gross et al. (Mem. Amer. Math. Soc. 278(1376), 1376, 1–103, 2022). Roughly put, the canonical wall structure is a data structure which encodes an algebro-geometric analogue of counts of Maslov index zero disks. These enumerative invariants are defined in terms of the punctured invariants of Abramovich et al. (Punctured Gromov–Witten invariants, 2020. arXiv:2009.07720v2 [math.AG]). There are then two main theorems of the paper. First, we prove consistency of the canonical wall structure, so that, using the setup of Gross et al. (Mem. Amer. Math. Soc. 278(1376), 1376, 1–103, 2022), the canonical wall structure gives rise to a mirror family. Second, we prove that this mirror family coincides with the intrinsic mirror constructed in Gross and Siebert (Intrinsic mirror symmetry, 2019. arXiv:1909.07649v2 [math.AG]). While the setup of this paper is narrower than that of Gross and Siebert (Intrinsic mirror symmetry, 2019. arXiv:1909.07649v2 [math.AG]), it gives a more detailed description of the mirror.more » « less
-
null (Ed.)We prove a decomposition formula of logarithmic Gromov–Witten invariants in a degeneration setting. A one-parameter log smooth family $$X \longrightarrow B$$ with singular fibre over $$b_0\in B$$ yields a family $$\mathscr {M}(X/B,\beta ) \longrightarrow B$$ of moduli stacks of stable logarithmic maps. We give a virtual decomposition of the fibre of this family over $$b_0$$ in terms of rigid tropical maps to the tropicalization of $X/B$ . This generalizes one aspect of known results in the case that the fibre $$X_{b_0}$$ is a normal crossings union of two divisors. We exhibit our formulas in explicit examples.more » « less
An official website of the United States government
