Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
St Helena Bay (SHB), a retentive zone in the productive southern Benguela Upwelling System off western South Africa, experiences seasonal hypoxia and episodic anoxic events that threaten local fisheries. To understand the drivers of oxygen variability in SHB, we queried 25 years of dissolved oxygen (DO) observations alongside high‐resolution wind and hydrographic data, and dynamical data from a high‐resolution model. At 70 m in SHB (mid‐bay), upwelling‐favorable winds in spring drove replenishment of cold, oxygenated water. Hypoxia developed in summer, becoming most severe in autumn. Bottom waters in autumn were replenished with warmer, less oxygenated water than in spring—suggesting a seasonal change in source waters upwelled into the bay. Downwelling and deep mixing in winter ventilated mid‐bay bottom waters, which reverted to hypoxic conditions during wind relaxations and reversals. In the nearshore (20 m), hypoxia occurred specifically during periods of upwelling‐favorable wind stress and was most severe in autumn. Using a statistical model, we extended basic hydrographic observations to nitrate and DO concentrations and developed metrics to identify the accumulation of excess nutrients on the shelf and nitrogen‐loss to denitrification, both of which were most prominent in autumn. A correspondence of the biogeochemical properties of hypoxic waters at 20 m to those at 70 m implicates the latter as the source waters upwelled inshore in autumn. We conclude that wind‐driven upwelling drives the replenishment of respired bottom waters in SHB with oxygenated waters, noting that less‐oxygenated water is imported later in the upwelling season, which exacerbates hypoxia.more » « lessFree, publicly-accessible full text available April 1, 2026
-
Abstract A realistic numerical model is used to study the circulation and mixing of the Salish Sea, a large, complex estuarine system on the United States and Canadian west coast. The Salish Sea is biologically productive and supports many important fisheries but is threatened by recurrent hypoxia and ocean acidification, so a clear understanding of its circulation patterns and residence times is of value. The estuarine exchange flow is quantified at 39 sections over 3 years (2017–2019) using the Total Exchange Flow method. Vertical mixing in the 37 segments between sections is quantified as opposing vertical transports: the efflux and reflux. Efflux refers to the rate at which deep, landward‐flowing water is mixed up to become part of the shallow, seaward‐flowing layer. Similarly, reflux refers to the rate at which upper layer water is mixed down to form part of the landward inflow. These horizontal and vertical transports are used to create a box model to explore residence times in a number of different sub‐volumes, seasons, and years. Residence times from the box model are generally found to be longer than those based on simpler calculations of flushing time. The longer residence times are partly due to reflux, and partly due to incomplete tracer homogenization in sub‐volumes. The methods presented here are broadly applicable to other estuaries.more » « less
-
Abstract The southern Benguela upwelling system (SBUS) supports high rates of primary productivity that sustain important commercial fisheries. The exceptional fertility of this system is reportedly fueled not only by upwelled nutrients but also by nutrients regenerated on the broad and shallow continental shelf. We measured nutrient concentrations and the nitrogen (N) and oxygen (O) isotope ratios (δ15N and δ18O) of nitrate along four zonal lines in the SBUS in late summer and early winter to evaluate the extent to which regenerated nutrients augment the upwelled nutrient reservoir originating offshore. During summer upwelling, a decrease in on‐shelf nitrate δ18O revealed that 0–48% of the subsurface nutrients derived from in situ remineralization. The nitrate regenerated on‐shelf in the more quiescent winter (0–63% of total nitrate) extended further offshore along the mid‐shelf. A shoreward increase in subsurface nitrate δ15N and a greater N deficit in on‐shelf bottom waters further indicated N loss to benthic (and at times, watercolumn) denitrification coincident with the on‐shelf remineralization. Our data show that remineralized nutrients get trapped on the SBUS shelf in summer through early winter, enhancing the nutrient pool that can be upwelled to support surface production. We hypothesize that this process is aided by a number of equatorward‐flowing hydrographic fronts that impede the lateral exchange of surface waters. The extent to which nutrients remain trapped on the shelf has implications for the occurrence of hypoxic events in the SBUS.more » « less
An official website of the United States government
