skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The DOI auto-population feature in the Public Access Repository (PAR) will be unavailable from 4:00 PM ET on Tuesday, July 8 until 4:00 PM ET on Wednesday, July 9 due to scheduled maintenance. We apologize for the inconvenience caused.


Search for: All records

Creators/Authors contains: "Sigl, Michael"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available December 1, 2025
  2. Common Era temperature variability has been a prominent component in Intergovernmental Panel on Climate Change reports over the last several decades and was twice featured in their Summary for Policymakers. A single reconstruction of mean Northern Hemisphere temperature variability was first highlighted in the 2001 Summary for Policymakers, despite other estimates that existed at the time. Subsequent reports assessed many large-scale temperature reconstructions, but the entirety of Common Era temperature history in the most recent Sixth Assessment Report of the Intergovernmental Panel on Climate Change was restricted to a single estimate of mean annual global temperatures. We argue that this focus on a single reconstruction is an insufficient summary of our understanding of temperature variability over the Common Era. We provide a complementary perspective by offering an alternative assessment of the state of our understanding in high-resolution paleoclimatology for the Common Era and call for future reports to present a more accurate and comprehensive assessment of our knowledge about this important period of human and climate history. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  3. Polar ice cores and historical records evidence a large-magnitude volcanic eruption in 1831 CE. This event was estimated to have injected ~13 Tg of sulfur (S) into the stratosphere which produced various atmospheric optical phenomena and led to Northern Hemisphere climate cooling of ~1 °C. The source of this volcanic event remains enigmatic, though one hypothesis has linked it to a modest phreatomagmatic eruption of Ferdinandea in the Strait of Sicily, which may have emitted additional S through magma–crust interactions with evaporite rocks. Here, we undertake a high-resolution multiproxy geochemical analysis of ice-core archives spanning the 1831 CE volcanic event. S isotopes confirm a major Northern Hemisphere stratospheric eruption but, importantly, rule out significant contributions from external evaporite S. In multiple ice cores, we identify cryptotephra layers of low K andesite-dacite glass shards occurring in summer 1831 CE and immediately prior to the stratospheric S fallout. This tephra matches the chemistry of the youngest Plinian eruption of Zavaritskii, a remote nested caldera on Simushir Island (Kurils). Radiocarbon ages confirm a recent (<300 y) eruption of Zavaritskii, and erupted volume estimates are consistent with a magnitude 5 to 6 event. The reconstructed radiative forcing of Zavaritskii (−2 ± 1 W m−2) is comparable to the 1991 CE Pinatubo eruption and can readily account for the climate cooling in 1831–1833 CE. These data provide compelling evidence that Zavaritskii was the source of the 1831 CE mystery eruption and solve a confounding case of multiple closely spaced observed and unobserved volcanic eruptions. 
    more » « less
    Free, publicly-accessible full text available January 7, 2026
  4. Abstract Existing global volcanic radiative aerosol forcing estimates portray the period 700 to 1000 as volcanically quiescent, void of major volcanic eruptions. However, this disagrees with proximal Icelandic geological records and regional Greenland ice-core records of sulfate. Here, we use cryptotephra analyses, high-resolution sulfur isotope analyses, and glaciochemical volcanic tracers on an array of Greenland ice cores to characterise volcanic activity and climatically important sulfuric aerosols across the period 700 to 1000. We identify a prolonged episode of volcanic sulfur dioxide emissions (751–940) dominated by Icelandic volcanism, that we term the Icelandic Active Period. This period commences with the Hrafnkatla episode (751–763), which coincided with strong winter cooling anomalies across Europe. This study reveals an important contribution of prolonged volcanic sulfate emissions to the pre-industrial atmospheric aerosol burden, currently not considered in existing forcing estimates, and highlights the need for further research to disentangle their associated climate feedbacks. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  5. Abstract The Eldgjá eruption is the largest basalt lava flood of the Common Era. It has been linked to a major ice‐core sulfur (S) spike in 939–940 CE and Northern Hemisphere summer cooling in 940 CE. Despite its magnitude and potential climate impacts, uncertainties remain concerning the eruption timeline, atmospheric dispersal of emitted volatiles, and coincident volcanism in Iceland and elsewhere. Here, we present a comprehensive analysis of Greenland ice‐cores from 936 to 943 CE, revealing a complex volatile record and cryptotephra with numerous geochemical populations. Transitional alkali basalt tephra matching Eldgjá are found in 939–940 CE, while tholeiitic basalt shards present in 936/937 CE and 940/941 CE are compatible with contemporaneous Icelandic eruptions from Grímsvötn and Bárðarbunga‐Veiðivötn systems (including V‐Sv tephra). We also find four silicic tephra populations, one of which we link to the Jala Pumice of Ceboruco (Mexico) at 941 ± 1 CE. Triple S isotopes, Δ33S, spanning 936–940 CE are indicative of upper tropospheric/lower stratospheric transport of aerosol sourced from the Icelandic fissure eruptions. However, anomalous Δ33S (down to −0.4‰) in 940–941 CE evidence stratospheric aerosol transport consistent with summer surface cooling revealed by tree‐ring reconstructions. Tephra associated with the anomalous Δ33S have a variety of compositions, complicating the attribution of climate cooling to Eldgjá alone. Nevertheless, our study confirms a major S emission from Eldgjá in 939–940 CE and implicates Eldgjá and a cluster of eruptions as triggers of summer cooling, severe winters, and privations in ∼940 CE. 
    more » « less
    Free, publicly-accessible full text available August 28, 2025
  6. The 540s, 1450s, and 1600s represent three of the five coldest decades in the Common Era (CE). In each of these cases, the cause of these cold pulses has been attributed to large volcanic eruptions. However, the provenance of the eruption and magnitude of the volcanic forcing remains uncertain. Here, we use high-resolution sulfur isotopes in Greenland and Antarctic ice cores measured across these events to provide a means of improving sulfur loading estimates for these eruptions. In each case, the largest reconstructed tree-ring cooling is associated with an extratropical eruption, and the high-altitude stratospheric sulfate loading of these events is substantially smaller than previous estimates (by up to a factor of two). These results suggest an increased sensitivity of the reconstructed Northern Hemisphere summer temperature response to extratropical eruptions. This highlights the importance of climate feedbacks and processes that amplify and prolong the cooling signal from high latitudes, such as changes in sea ice extent and ocean heat content. 
    more » « less
  7. Abstract Black carbon emitted by incomplete combustion of fossil fuels and biomass has a net warming effect in the atmosphere and reduces the albedo when deposited on ice and snow; accurate knowledge of past emissions is essential to quantify and model associated global climate forcing. Although bottom-up inventories provide historical Black Carbon emission estimates that are widely used in Earth System Models, they are poorly constrained by observations prior to the late 20th century. Here we use an objective inversion technique based on detailed atmospheric transport and deposition modeling to reconstruct 1850 to 2000 emissions from thirteen Northern Hemisphere ice-core records. We find substantial discrepancies between reconstructed Black Carbon emissions and existing bottom-up inventories which do not fully capture the complex spatial-temporal emission patterns. Our findings imply changes to existing historical Black Carbon radiative forcing estimates are necessary, with potential implications for observation-constrained climate sensitivity. 
    more » « less
  8. Abstract. The injection of sulfur into the stratosphere by volcanic eruptions is thedominant driver of natural climate variability oninterannual to multidecadal timescales. Based on a set of continuous sulfateand sulfur records from a suite of ice cores from Greenland and Antarctica,the HolVol v.1.0 database includes estimates of the magnitudes andapproximate source latitudes of major volcanic stratospheric sulfurinjection (VSSI) events for the Holocene (from 9500 BCE or 11 500 years BP to1900 CE), constituting an extension of the previous record by 7000 years.The database incorporates new-generation ice-core aerosol records with asub-annual temporal resolution and a demonstrated sub-decadal dating accuracyand precision. By tightly aligning and stacking the ice-core records on theWD2014 chronology from Antarctica, we resolve long-standing inconsistenciesin the dating of ancient volcanic eruptions that arise from biased (i.e.,dated too old) ice-core chronologies over the Holocene for Greenland. Wereconstruct a total of 850 volcanic eruptions with injections in excess of 1 teragram of sulfur (Tg S); of these eruptions, 329 (39 %) are located in the low latitudes with bipolarsulfate deposition, 426 (50 %) are located in the Northern Hemisphere extratropics (NHET) and 88 (10 %) are located in the Southern Hemisphere extratropics (SHET). The spatial distribution of the reconstructed eruption locationsis in agreement with prior reconstructions for the past 2500 years. Intotal, these eruptions injected 7410 Tg S into thestratosphere: 70 % from tropical eruptions and 25 % from NHextratropical eruptions. A long-term latitudinally and monthly resolvedstratospheric aerosol optical depth (SAOD) time series is reconstructed fromthe HolVol VSSI estimates, representing the first Holocene-scalereconstruction constrained by Greenland and Antarctica ice cores. These newlong-term reconstructions of past VSSI and SAOD variability confirm evidencefrom regional volcanic eruption chronologies (e.g., from Iceland) in showingthat the Early Holocene (9500–7000 BCE) experienced a higher number ofvolcanic eruptions (+16 %) and cumulative VSSI (+86 %) compared withthe past 2500 years. This increase coincides with the rapid retreat of icesheets during deglaciation, providing context for potential future increasesin volcanic activity in regions under projected glacier melting in the 21stcentury. The reconstructed VSSI and SAOD data are available at https://doi.org/10.1594/PANGAEA.928646 (Sigl et al., 2021). 
    more » « less