Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
This dataset includes hatch and larval period for sand lance collected in 2019 and results from particle tracking runs of simulated sand lance larvae throughout the Northeast U.S. Shelf as part of Long-Term Ecological Research (NES-LTER). Release dates vary by region, corresponding to hatch and settlement dates of settling sand lance collected in 2019. Particles were depth-keeping throughout the upper 40 m to best replicate our understanding of the vertical distribution of sand lance larvae. Data were used to determine the average particle transport pathways from these sand lance habitats, including connectivity among the three hotspots, and spatial variability of connectivity within each hotspot. Further information can be found within the manuscript: Suca, J. J., Ji, R., Baumann, H., Pham, K., Silva, T. L., Wiley, D. N., Feng, Z., & Llopiz, J. K. (2022). Larval transport pathways from three prominent sand lance habitats in the Gulf of Maine. Fisheries Oceanography, 31( 3), 333-352. https://doi.org/10.1111/fog.12580more » « less
-
Ojaveer, Henn (Ed.)Abstract Northern sand lance (Ammodytes dubius) and Atlantic herring (Clupea harengus) represent the dominant lipid-rich forage fish species throughout the Northeast US shelf and are critical prey for numerous top predators. However, unlike Atlantic herring, there is little research on sand lance or information about drivers of their abundance. We use intra-annual measurements of sand lance diet, growth, and condition to explain annual variability in sand lance abundance on the Northeast US Shelf. Our observations indicate that northern sand lance feed, grow, and accumulate lipids in the late winter through summer, predominantly consuming the copepod Calanus finmarchicus. Sand lance then cease feeding, utilize lipids, and begin gonad development in the fall. We show that the abundance of C. finmarchicus influences sand lance parental condition and recruitment. Atlantic herring can mute this effect through intra-guild predation. Hydrography further impacts sand lance abundance as increases in warm slope water decrease overwinter survival of reproductive adults. The predicted changes to these drivers indicate that sand lance will no longer be able to fill the role of lipid-rich forage during times of low Atlantic herring abundance—changing the Northeast US shelf forage fish complex by the end of the century.more » « less
-
Abstract Northern sand lance (Ammodytes dubius) are among the most critically important forage fish throughout the Northeast US shelf. Despite their ecological importance, little is known about the larval transport of this species. Here, we use otolith microstructure analysis to estimate hatch and settlement dates of sand lance and then use these measurements to parametrize particle tracking experiments to assess the source–sink dynamics of three prominent sand lance habitats in the Gulf of Maine: Stellwagen Bank, the Great South Channel, and Georges Bank. Our results indicate the pelagic larval duration of northern sand lance lasts about 2 months (range: 50–84 days) and exhibit a broad range of hatch and settlement dates. Forward and backward particle tracking experiments show substantial interannual variability, yet suggest transport generally follows the north to south circulation in the Gulf of Maine region. We find that Stellwagen Bank is a major source of larvae for the Great South Channel, while the Great South Channel primarily serves as a sink for larvae from Stellwagen Bank and Georges Bank. Retention is likely the primary source of larvae on Georges Bank. Retention within both Georges Bank and Stellwagen Bank varies interannually in response to changes in local wind events, while the Great South Channel only exhibited notable retention in a single year. Collectively, these results provide a framework to assess population connectivity among these sand lance habitats, which informs the species' recruitment dynamics and impacts its vulnerability to exploitation.more » « less
An official website of the United States government
