Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract JWST is revealing a remarkable new population of high-redshift (z ≳ 4), low-luminosity active galactic nuclei in deep surveys and detecting the host galaxy's stellar light in the most luminous and massive quasars atz ∼ 6 for the first time. Recent findings claim that supermassive black holes (SMBHs) in these systems are significantly more massive than predicted by the local black hole (BH) mass–stellar mass ( ) relation and that this is not due to sample selection effects. Through detailed statistical modeling, we demonstrate that the coupled effects of selection biases (i.e., finite detection limit and requirements for detecting broad lines) and measurement uncertainties can largely explain the reported offset and flattening in the observed relation toward the upper envelope of the local relation, even for those at . We further investigate the possible evolution of the relation atz ≳ 4 with careful treatment of observational biases and consideration of the degeneracy between intrinsic evolution and dispersion in this relation. The bias-corrected intrinsic relation in the low-mass regime ( ) suggests a large population of low-mass BHs ( ), possibly originating from lighter seeds, may remain undetected or unidentified. These results underscore the importance of forward modeling observational biases to better understand BH seeding and SMBH–galaxy coevolution mechanisms in the early universe, even with the deepest JWST surveys.more » « lessFree, publicly-accessible full text available February 21, 2026
- 
            Free, publicly-accessible full text available August 11, 2026
- 
            Abstract We carry out a comparative analysis of the relation between the mass of supermassive black holes (BHs) and the stellar mass of their host galaxies at 0.2 < z < 1.7 using well-matched observations and multiple state-of-the-art simulations (e.g., MassiveBlackII, Horizon-AGN, Illustris, TNG, and a semianalytic model). The observed sample consists of 646 uniformly selected Sloan Digital Sky Survey quasars (0.2 < z < 0.8) and 32 broad-line active galactic nuclei (AGNs; 1.2 < z < 1.7) with imaging from Hyper Suprime-Cam (HSC) for the former and Hubble Space Telescope (HST) for the latter. We first add realistic observational uncertainties to the simulation data and then construct a simulated sample in the same manner as the observations. Over the full redshift range, our analysis demonstrates that all simulations predict a level of intrinsic scatter of the scaling relations comparable to the observations that appear to agree with the dispersion of the local relation. Regarding the mean relation, Horizon-AGN and TNG are in closest agreement with the observations at low and high redshift ( z ∼ 0.2 and 1.5, respectively), while the other simulations show subtle differences within the uncertainties. For insight into the physics involved, the scatter of the scaling relation, seen in the SAM, is reduced by a factor of two and closer to the observations after adopting a new feedback model that considers the geometry of the AGN outflow. The consistency in the dispersion with redshift in our analysis supports the importance of both quasar- and radio-mode feedback prescriptions in the simulations. Finally, we highlight the importance of increasing the sensitivity (e.g., using the James Webb Space Telescope), thereby pushing to lower masses and minimizing biases due to selection effects.more » « less
- 
            Abstract We report the discovery of 15 exceptionally luminous 10 ≲z≲ 14 candidate galaxies discovered in the first 0.28 deg2of JWST/NIRCam imaging from the COSMOS-Web survey. These sources span rest-frame UV magnitudes of −20.5 >MUV> −22, and thus constitute the most intrinsically luminousz≳ 10 candidates identified by JWST to date. Selected via NIRCam imaging, deep ground-based observations corroborate their detection and help significantly constrain their photometric redshifts. We analyze their spectral energy distributions using multiple open-source codes and evaluate the probability of low-redshift solutions; we conclude that 12/15 (80%) are likely genuinez≳ 10 sources and 3/15 (20%) likely low-redshift contaminants. Three of ourz∼ 12 candidates push the limits of early stellar mass assembly: they have estimated stellar masses ∼ 5 × 109M⊙, implying an effective stellar baryon fraction ofϵ⋆∼ 0.2−0.5, whereϵ⋆≡M⋆/(fbMhalo). The assembly of such stellar reservoirs is made possible due to rapid, burst-driven star formation on timescales < 100 Myr where the star formation rate may far outpace the growth of the underlying dark matter halos. This is supported by the similar volume densities inferred forM⋆∼ 1010M⊙galaxies relative toM⋆∼ 109M⊙—both about 10−6Mpc−3—implying they live in halos of comparable mass. At such high redshifts, the duty cycle for starbursts would be of order unity, which could cause the observed change in the shape of the UV luminosity function from a double power law to a Schechter function atz≈ 8. Spectroscopic redshift confirmation and ensuing constraints of their masses will be critical to understand how, and if, such early massive galaxies push the limits of galaxy formation in the Lambda cold dark matter paradigm.more » « less
- 
            The detection of starlight from the host galaxies of quasars during the reionization epoch (z > 6) has been elusive, even with deep HST observations1,2. The current highest redshift quasar host detected3, at z = 4.5, required the magnifying effect of a foreground lensing galaxy. Low-luminosity quasars4,5,6 from the Hyper Suprime-Cam Subaru Strategic Program (HSC-SSP)7 mitigate the challenge of detecting their underlying, previously-undetected host galaxies. Here we report rest-frame optical images and spectroscopy of two HSC-SSP quasars at z > 6 with JWST. Using NIRCam imaging at 3.6μm and 1.5μm and subtracting the light from the unresolved quasars, we find that the host galaxies are massive (stellar masses of 13 × and 3.4 × 1010 M⊙, respectively), compact, and disk-like. NIRSpec medium-resolution spectroscopy shows stellar absorption lines in the more massive quasar, confirming the detection of the host. Velocity-broadened gas in the vicinity of these quasars enables measurements of their black hole masses (1.4 × 109 and 2.0 × 108 M⊙, respectively). Their location in the black hole mass - stellar mass plane is consistent with the distribution at low redshift, suggesting that the relation between black holes and their host galaxies was already in place less than a billion years after the Big Bang.more » « less
- 
            null (Ed.)We present the first [C II] 158 μ m luminosity function (LF) at z ∼ 5 from a sample of serendipitous lines detected in the ALMA Large Program to INvestigate [C II] at Early times (ALPINE). A study of the 118 ALPINE pointings revealed several serendipitous lines. Based on their fidelity, we selected 14 lines for the final catalog. According to the redshift of their counterparts, we identified eight out of 14 detections as [C II] lines at z ∼ 5, along with two as CO transitions at lower redshifts. The remaining four lines have an elusive identification in the available catalogs and we considered them as [C II] candidates. We used the eight confirmed [C II] and the four [C II] candidates to build one of the first [C II] LFs at z ∼ 5. We found that 11 out of these 12 sources have a redshift very similar to that of the ALPINE target in the same pointing, suggesting the presence of overdensities around the targets. Therefore, we split the sample in two (a “clustered” and “field” subsample) according to their redshift separation and built two separate LFs. Our estimates suggest that there could be an evolution of the [C II] LF between z ∼ 5 and z ∼ 0. By converting the [C II] luminosity to the star-formation rate, we evaluated the cosmic star-formation rate density (SFRD) at z ∼ 5. The clustered sample results in a SFRD ∼10 times higher than previous measurements from UV–selected galaxies. On the other hand, from the field sample (likely representing the average galaxy population), we derived a SFRD ∼1.6 higher compared to current estimates from UV surveys but compatible within the errors. Because of the large uncertainties, observations of larger samples will be necessary to better constrain the SFRD at z ∼ 5. This study represents one of the first efforts aimed at characterizing the demography of [C II] emitters at z ∼ 5 using a mm selection of galaxies.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
