skip to main content

Title: The ALPINE–ALMA [C II] survey: Luminosity function of serendipitous [C II] line emitters at z ∼ 5
We present the first [C II] 158 μ m luminosity function (LF) at z  ∼ 5 from a sample of serendipitous lines detected in the ALMA Large Program to INvestigate [C II] at Early times (ALPINE). A study of the 118 ALPINE pointings revealed several serendipitous lines. Based on their fidelity, we selected 14 lines for the final catalog. According to the redshift of their counterparts, we identified eight out of 14 detections as [C II] lines at z  ∼ 5, along with two as CO transitions at lower redshifts. The remaining four lines have an elusive identification in the available catalogs and we considered them as [C II] candidates. We used the eight confirmed [C II] and the four [C II] candidates to build one of the first [C II] LFs at z  ∼ 5. We found that 11 out of these 12 sources have a redshift very similar to that of the ALPINE target in the same pointing, suggesting the presence of overdensities around the targets. Therefore, we split the sample in two (a “clustered” and “field” subsample) according to their redshift separation and built two separate LFs. Our estimates suggest that there could be an evolution of the [C II] more » LF between z  ∼ 5 and z  ∼ 0. By converting the [C II] luminosity to the star-formation rate, we evaluated the cosmic star-formation rate density (SFRD) at z  ∼ 5. The clustered sample results in a SFRD ∼10 times higher than previous measurements from UV–selected galaxies. On the other hand, from the field sample (likely representing the average galaxy population), we derived a SFRD ∼1.6 higher compared to current estimates from UV surveys but compatible within the errors. Because of the large uncertainties, observations of larger samples will be necessary to better constrain the SFRD at z  ∼ 5. This study represents one of the first efforts aimed at characterizing the demography of [C II] emitters at z  ∼ 5 using a mm selection of galaxies. « less
Authors:
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Award ID(s):
1908422
Publication Date:
NSF-PAR ID:
10286672
Journal Name:
Astronomy & Astrophysics
Volume:
646
Page Range or eLocation-ID:
A76
ISSN:
0004-6361
Sponsoring Org:
National Science Foundation
More Like this
  1. Aims. We present the detailed characterisation of a sample of 56 sources serendipitously detected in ALMA band 7 as part of the ALMA Large Program to INvestigate CII at Early Times (ALPINE). These sources, detected in COSMOS and ECDFS, have been used to derive the total infrared luminosity function (LF) and to estimate the cosmic star formation rate density (SFRD) up to z  ≃ 6. Methods. We looked for counterparts of the ALMA sources in all the available multi-wavelength (from HST to VLA) and photometric redshift catalogues. We also made use of deeper UltraVISTA and Spitzer source lists and maps to identify optically dark sources with no matches in the public catalogues. We used the sources with estimated redshifts to derive the 250 μ m rest-frame and total infrared (8–1000 μ m) LFs from z  ≃ 0.5 to 6. Results. Our ALMA blind survey (860 μ m flux density range: ∼0.3–12.5 mJy) allows us to further push the study of the nature and evolution of dusty galaxies at high- z , identifying luminous and massive sources to redshifts and faint luminosities never probed before by any far-infrared surveys. The ALPINE data are the first ones to sample the faint end of themore »infrared LF, showing little evolution from z  ≃ 2.5 to z ≃ 6, and a “flat” slope up to the highest redshifts (i.e. 4.5 <   z  <  6). The SFRD obtained by integrating the luminosity function remains almost constant between z  ≃ 2 and z  ≃ 6, and significantly higher than the optical or ultra-violet derivations, showing a significant contribution of dusty galaxies and obscured star formation at high- z . About 14% of all the ALPINE serendipitous continuum sources are found to be optically and near-infrared (near-IR) dark (to a depth K s  ∼ 24.9 mag). Six show a counterpart only in the mid-IR and no HST or near-IR identification, while two are detected as [C II] emitters at z  ≃ 5. The six HST+near-IR dark galaxies with mid-IR counterparts are found to contribute about 17% of the total SFRD at z  ≃ 5 and to dominate the high-mass end of the stellar mass function at z  >  3.« less
  2. Abstract

    We present the Lyαemission line luminosity function (LF) of the active galactic nuclei (AGN) in the first release of the Hobby–Eberly Telescope Dark Energy Experiment Survey (HETDEX) AGN catalog. The AGN are selected either by emission line pairs characteristic of AGN or by a single broad emission line, free of any photometric preselections (magnitude/color/morphology). The sample consists of 2346 AGN spanning 1.88 <z< 3.53, covering an effective area of 30.61 deg2. Approximately 2.6% of the HETDEX AGN are not detected at >5σconfidence atr∼ 26 in the deepestr-band images we have searched. The Lyαline luminosity ranges from ∼1042.3to 1045.9erg s−1. Our LyαLF shows a turnover luminosity with opposite slopes on the bright end and the faint end: The space density is highest atLLyα=1043.4erg s−1. We explore the evolution of the AGN LF over a broader redshift range (0.8 <z< 3); constructing the rest-frame ultraviolet (UV) LF with the 1450 Å monochromatic luminosity of the power-law component of the continuum (M1450) fromM1450∼ −18 to −27.5. We divide the sample into three redshift bins (z∼ 1.5, 2.1, and 2.6). In all three redshift bins, our UV LFs indicate that the space density of AGN is highest at themore »turnover luminosityM1450*with opposite slopes on the bright end and the faint end. TheM1450LFs in the three redshift bins can be well fit with a luminosity evolution and density evolution model: the turnover luminosity (M1450*) increases, and the turnover density (Φ*) decreases with increasing redshift.

    « less
  3. ABSTRACT We report the serendipitous discovery of a dust-obscured galaxy observed as part of the Atacama Large Millimeter Array (ALMA) Large Program to INvestigate [C ii] at Early times (ALPINE). While this galaxy is detected both in line and continuum emissions in ALMA Band 7, it is completely dark in the observed optical/near-infrared bands and only shows a significant detection in the UltraVISTA Ks band. We discuss the nature of the observed ALMA line, that is [C ii] at $z$ ∼ 4.6 or high-J CO transitions at $z$ ∼ 2.2. In the first case, we find a [C ii]/FIR luminosity ratio of $\mathrm{log}{(L_{[\mathrm{ C}\, \rm {\small {II}}]}/L_{\mathrm{ FIR}})} \sim -2.5$, consistent with the average value for local star-forming galaxies (SFGs). In the second case instead, the source would lie at larger CO luminosities than those expected for local SFGs and high-z submillimetre galaxies. At both redshifts, we derive the star formation rate (SFR) from the ALMA continuum and the physical parameters of the galaxy, such as the stellar mass (M*), by fitting its spectral energy distribution. Exploiting the results of this work, we believe that our source is a ‘main-sequence’, dusty SFG at $z$ = 4.6 (i.e. [C ii] emitter) with $\mathrm{log(SFR/M_{\odot }\, yr^{-1})}\sim 1.4$more »and log(M*/M⊙) ∼ 9.9. As a support to this scenario our galaxy, if at this redshift, lies in a massive protocluster recently discovered at $z$ ∼ 4.57, at only ∼1 proper Mpc from its centre. This work underlines the crucial role of the ALPINE survey in making a census of this class of objects, in order to unveil their contribution to the global SFR density at the end of the Reionization epoch.« less
  4. Abstract

    We present the radio properties of 66 spectroscopically confirmed normal star-forming galaxies (SFGs) at 4.4 <z< 5.9 in the COSMOS field that were [Cii]-detected in the Atacama Large Millimeter/submillimeter Array Large Program to INvestigate [Cii] at Early times (ALPINE). We separate these galaxies (“Cii-detected-all”) into lower-redshift (“Cii-detected-lz”; 〈z〉 = 4.5) and higher-redshift (“Cii-detected-hz”; 〈z〉 = 5.6) subsamples, and stack multiwavelength imaging for each subsample from X-ray to radio bands. A radio signal is detected in the stacked 3 GHz images of the Cii-detected-all and lz samples at ≳3σ. We find that the infrared–radio correlation of our sample, quantified byqTIR, is lower than the local relation for normal SFGs at a ∼3σsignificance level, and is instead broadly consistent with that of bright submillimeter galaxies at 2 <z< 5. Neither of these samples show evidence of dominant active galactic nucleus activity in their stacked spectral energy distributions (SEDs), UV spectra, or stacked X-ray images. Although we cannot rule out the possible effects of the assumed spectral index and applied infrared SED templates in causing these differences, at least partially, the lower obscured fraction of star formation than at lower redshift can alleviate the tension between our stackedqTIRs and those of localmore »normal SFGs. It is possible that the dust buildup, which primarily governs the infrared emission, in addition to older stellar populations, has not had enough time to occur fully in these galaxies, whereas the radio emission can respond on a more rapid timescale. Therefore, we might expect a lowerqTIRto be a general property of high-redshift SFGs.

    « less
  5. Abstract The Atacama Large Millimeter/submillimeter Array (ALMA) Spectroscopic Survey in the Hubble Ultra Deep Field (ASPECS) Band 6 scan (212–272 GHz) covers potential [C ii ] emission in galaxies at 6 ≤ z ≤ 8 throughout a 2.9 arcmin 2 area. By selecting on known Ly α emitters (LAEs) and photometric dropout galaxies in the field, we perform targeted searches down to a 5 σ [C ii ] luminosity depth L [C II ] ∼ 2.0 × 10 8 L ⊙ , corresponding roughly to star formation rates (SFRs) of 10–20 M ⊙ yr −1 when applying a locally calibrated conversion for star-forming galaxies, yielding zero detections. While the majority of galaxies in this sample are characterized by lower SFRs, the resulting upper limits on [C ii ] luminosity in these sources are consistent with the current literature sample of targeted ALMA observations of z = 6–7 LAEs and Lyman-break galaxies (LBGs), as well as the locally calibrated relations between L [C ii ] and SFR—with the exception of a single [C ii ]-deficient, UV-luminous LBG. We also perform a blind search for [C ii ]-bright galaxies that may have been missed by optical selections, resulting in an upper limitmore »on the cumulative number density of [C ii ] sources with L [C II ] > 2.0 × 10 8 L ⊙ (5 σ ) to be less than 1.8 × 10 −4 Mpc −3 (90% confidence level). At this luminosity depth and volume coverage, we present an observed evolution of the [C ii ] luminosity function from z = 6–8 to z ∼ 0 by comparing the ASPECS measurement to literature results at lower redshift.« less