- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Basit, Abdul (1)
-
McGinnis, Daniel (1)
-
Simmons, Henry (1)
-
Sinnwell, Matt (1)
-
Zerbib, Shira (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
For an $$r$$-uniform hypergraph $$H$$, let $$\nu^{(m)}(H)$$ denote the maximum size of a set $$M$$ of edges in $$H$$ such that every two edges in $$M$$ intersect in less than $$m$$ vertices, and let $$\tau^{(m)}(H)$$ denote the minimum size of a collection $$C$$ of $$m$$-sets of vertices such that every edge in $$H$$ contains an element of $$C$$. The fractional analogues of these parameters are denoted by $$\nu^{*(m)}(H)$$ and $$\tau^{*(m)}(H)$$, respectively. Generalizing a famous conjecture of Tuza on covering triangles in a graph, Aharoni and Zerbib conjectured that for every $$r$$-uniform hypergraph $$H$$, $$\tau^{(r-1)}(H)/\nu^{(r-1)}(H) \leq \lceil{\frac{r+1}{2}}\rceil$$. In this paper we prove bounds on the ratio between the parameters $$\tau^{(m)}$$ and $$\nu^{(m)}$$, and their fractional analogues. Our main result is that, for every $$r$$-uniform hypergraph~$$H$$,\[ \tau^{*(r-1)}(H)/\nu^{(r-1)}(H) \le \begin{cases} \frac{3}{4}r - \frac{r}{4(r+1)} &\text{for }r\text{ even,}\\\frac{3}{4}r - \frac{r}{4(r+2)} &\text{for }r\text{ odd.} \\\end{cases} \]This improves the known bound of $$r-1$.We also prove that, for every $$r$$-uniform hypergraph $$H$$, $$\tau^{(m)}(H)/\nu^{*(m)}(H) \le \operatorname{ex}_m(r, m+1)$$, where the TurĂ¡n number $$\operatorname{ex}_r(n, k)$$ is the maximum number of edges in an $$r$$-uniform hypergraph on $$n$$ vertices that does not contain a copy of the complete $$r$$-uniform hypergraph on $$k$$ vertices. Finally, we prove further bounds in the special cases $(r,m)=(4,2)$ and $(r,m)=(4,3)$.more » « less
An official website of the United States government
