Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
As phenomics data volume and dimensionality increase due to advancements in sensor technology, there is an urgent need to develop and implement scalable data processing pipelines. Current phenomics data processing pipelines lack modularity, extensibility, and processing distribution across sensor modalities and phenotyping platforms. To address these challenges, we developed PhytoOracle (PO), a suite of modular, scalable pipelines for processing large volumes of field phenomics RGB, thermal, PSII chlorophyll fluorescence 2D images, and 3D point clouds. PhytoOracle aims to ( i ) improve data processing efficiency; ( ii ) provide an extensible, reproducible computing framework; and ( iii ) enable data fusion of multi-modal phenomics data. PhytoOracle integrates open-source distributed computing frameworks for parallel processing on high-performance computing, cloud, and local computing environments. Each pipeline component is available as a standalone container, providing transferability, extensibility, and reproducibility. The PO pipeline extracts and associates individual plant traits across sensor modalities and collection time points, representing a unique multi-system approach to addressing the genotype-phenotype gap. To date, PO supports lettuce and sorghum phenotypic trait extraction, with a goal of widening the range of supported species in the future. At the maximum number of cores tested in this study (1,024 cores), PO processing times were: 235 minutes for 9,270 RGB images (140.7 GB), 235 minutes for 9,270 thermal images (5.4 GB), and 13 minutes for 39,678 PSII images (86.2 GB). These processing times represent end-to-end processing, from raw data to fully processed numerical phenotypic trait data. Repeatability values of 0.39-0.95 (bounding area), 0.81-0.95 (axis-aligned bounding volume), 0.79-0.94 (oriented bounding volume), 0.83-0.95 (plant height), and 0.81-0.95 (number of points) were observed in Field Scanalyzer data. We also show the ability of PO to process drone data with a repeatability of 0.55-0.95 (bounding area).more » « less
-
Abstract The Surface Water and Ocean Topography (SWOT) satellite has the potential to transform global hydrologic science by offering simultaneous and synoptic estimates of river discharge and other hydraulic variables. Discharge is estimated from SWOT observations of water surface elevation, width, and slope. A first assessment using just the highest quality SWOT measurements, over the first 15 months (March 2023–July 2024) of the mission evaluated at 65 gauged reaches shows results consistent with pre‐launch expectations. SWOT estimates track discharge dynamics without relying on any gauge information: median correlation is 0.73, with a correlation interquartile range of 0.51–0.89. SWOT estimates capture discharge magnitude correctly in some cases but are biased (median bias is 50%) in others. There are already a total of 11,274 ungauged global locations with highest quality SWOT measurements where SWOT discharge is expected to accurately track discharge variations: this value will increase as SWOT data record length grows, algorithms are refined and SWOT measurements are reprocessed. This first look indicates that SWOT discharge is performing as expected for SWOT data that achieve performance requirements, providing observed information on discharge variations in ungauged basins globally.more » « lessFree, publicly-accessible full text available May 16, 2026
An official website of the United States government
