Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We analyze the use of photonic links to enable large-scale fault-tolerant connectivity of locally error-corrected modules based on neutral atom arrays. Our approach makes use of recent theoretical results showing the robustness of surface codes to boundary noise and combines recent experimental advances in atom-array quantum computing with logical qubits with optical quantum networking techniques. We find the conditions for fault tolerance can be achieved with local two-qubit Rydberg gate and nonlocal Bell-pair errors below 1% and 10%, respectively, without requiring distillation or space-time overheads. Realizing the interconnects with a lens, a single optical cavity, or an array of cavities enables—with sufficient multiplexing—a Bell-pair generation rate in the 1–50 MHz range. When directly interfacing logical qubits, this rate translates to error-correction cycles in the 25–2000 kHz range, satisfying all requirements for fault tolerance and in the upper range fast enough for 100 kHz logical clock cycles. Published by the American Physical Society2025more » « lessFree, publicly-accessible full text available March 1, 2026
-
Abstract One of the most promising routes toward scalable quantum computing is a modular approach. We show that distinct surface code patches can be connected in a fault-tolerant manner even in the presence of substantial noise along their connecting interface. We quantify analytically and numerically the combined effect of errors across the interface and bulk. We show that the system can tolerate 14 times higher noise at the interface compared to the bulk, with only a small effect on the code’s threshold and subthreshold behavior, reaching threshold with ~1% bulk errors and ~10% interface errors. This implies that fault-tolerant scaling of error-corrected modular devices is within reach using existing technology.more » « lessFree, publicly-accessible full text available December 1, 2025
-
In order for optical cavities to enable strong light-matter interactions for quantum metrology, networking, and scalability in quantum computing systems, their mirrors must have minimal losses. However, high-finesse dielectric cavity mirrors can degrade in ultra-high vacuum (UHV), increasing the challenges of upgrading to cavity-coupled quantum systems. We observe the optical degradation of high-finesse dielectric optical cavity mirrors after high-temperature UHV bake in the form of a substantial increase in surface roughness. We provide an explanation of the degradation through atomic force microscopy (AFM), X-ray fluorescence (XRF), selective wet etching, and optical measurements. We find the degradation is explained by oxygen reduction in Ta2O5followed by growth of tantalum sub-oxide defects with height to width aspect ratios near ten. We discuss the dependence of mirror loss on surface roughness and finally give recommendations to avoid degradation to allow for quick adoption of cavity-coupled systems.more » « less
An official website of the United States government
