skip to main content


Search for: All records

Creators/Authors contains: "Singh, Chandan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Modern machine learning has achieved impressive prediction performance, but often sacrifices interpretability, a critical consideration in high-stakes domains such as medicine. In such settings, practitioners often use highly interpretable decision tree models, but these suffer from inductive bias against additive structure. To overcome this bias, we propose Fast Interpretable Greedy-Tree Sums (FIGS), which generalizes the CART algorithm to simultaneously grow a flexible number of trees in summation. By combining logical rules with addition, FIGS is able to adapt to additive structure while remaining highly interpretable. Extensive experiments on real-world datasets show that FIGS achieves state-of-the-art prediction performance. To demonstrate the usefulness of FIGS in high-stakes domains, we adapt FIGS to learn clinical decision instruments (CDIs), which are tools for guiding clinical decision-making. Specifically, we introduce a variant of FIGS known as G-FIGS that accounts for the heterogeneity in medical data. G-FIGS derives CDIs that reflect domain knowledge and enjoy improved specificity (by up to 20% over CART) without sacrificing sensitivity or interpretability. To provide further insight into FIGS, we prove that FIGS learns components of additive models, a property we refer to as disentanglement. Further, we show (under oracle conditions) that unconstrained tree-sum models leverage disentanglement to generalize more efficiently than single decision tree models when fitted to additive regression functions. Finally, to avoid overfitting with an unconstrained number of splits, we develop Bagging-FIGS, an ensemble version of FIGS that borrows the variance reduction techniques of random forests. Bagging-FIGS enjoys competitive performance with random forests and XGBoost on real-world datasets. 
    more » « less
    Free, publicly-accessible full text available July 1, 2024
  2. Tree-based models such as decision trees and random forests (RF) are a cornerstone of modern machine-learning practice. To mitigate overfitting, trees are typically regularized by a variety of techniques that modify their structure (e.g. pruning). We introduce Hierarchical Shrinkage (HS), a post-hoc algorithm that does not modify the tree structure, and instead regularizes the tree by shrinking the prediction over each node towards the sample means of its ancestors. The amount of shrinkage is controlled by a single regularization parameter and the number of data points in each ancestor. Since HS is a post-hoc method, it is extremely fast, compatible with any tree growing algorithm, and can be used synergistically with other regularization techniques. Extensive experiments over a wide variety of real world datasets show that HS substantially increases the predictive performance of decision trees, even when used in conjunction with other regularization techniques. Moreover, we find that applying HS to each tree in an RF often improves accuracy, as well as its interpretability by simplifying and stabilizing its decision boundaries and SHAP values. We further explain the success of HS in improving prediction performance by showing its equivalence to ridge regression on a (supervised) basis constructed of decision stumps associated with the internal nodes of a tree. All code and models are released in a full fledged package available on Github. 
    more » « less
  3. Recent deep-learning models have achieved impressive predictive performance by learning complex functions of many variables, often at the cost of interpretability. This chapter covers recent work aiming to interpret models by attributing importance to features and feature groups for a single prediction. Importantly, the proposed attributions assign importance to interactions between features, in addition to features in isolation. These attributions are shown to yield insights across real-world domains, including bio-imaging, cosmology image and natural-language processing. We then show how these attributions can be used to directly improve the generalization of a neural network or to distill it into a simple model. Throughout the chapter, we emphasize the use of reality checks to scrutinize the proposed interpretation techniques. (Code for all methods in this chapter is available at github.com/csinva and github.com/Yu-Group, implemented in PyTorch [54]). 
    more » « less
  4. Machine learning in high-stakes domains, such as healthcare, faces two critical challenges: (1) generalizing to diverse data distributions given limited training data while (2) maintaining interpretability. To address these challenges, we propose an instance-weighted tree-sum method that effectively pools data across diverse groups to output a concise, rule-based model. Given distinct groups of instances in a dataset (e.g., medical patients grouped by age or treatment site), our method first estimates group membership probabilities for each instance. Then, it uses these estimates as instance weights in FIGS (Tan et al., 2022), to grow a set of decision trees whose values sum to the final prediction. We call this new method Group Probability-Weighted Tree Sums (G-FIGS). G-FIGS achieves state-of-theart prediction performance on important clinical datasets; e.g., holding the level of sensitivity fixed at 92%, G-FIGS increases specificity for identifying cervical spine injury (CSI) by up to 10% over CART and up to 3% over FIGS alone, with larger gains at higher sensitivity levels. By keeping the total number of rules below 16 in FIGS, the final models remain interpretable, and we find that their rules match medical domain expertise. All code, data, and models are released on Github. 
    more » « less
  5. Li-Jessen, Nicole Yee-Key (Ed.)
    Objective The Pediatric Emergency Care Applied Research Network (PECARN) has developed a clinical-decision instrument (CDI) to identify children at very low risk of intra-abdominal injury. However, the CDI has not been externally validated. We sought to vet the PECARN CDI with the Predictability Computability Stability (PCS) data science framework, potentially increasing its chance of a successful external validation. Materials & methods We performed a secondary analysis of two prospectively collected datasets: PECARN (12,044 children from 20 emergency departments) and an independent external validation dataset from the Pediatric Surgical Research Collaborative (PedSRC; 2,188 children from 14 emergency departments). We used PCS to reanalyze the original PECARN CDI along with new interpretable PCS CDIs developed using the PECARN dataset. External validation was then measured on the PedSRC dataset. Results Three predictor variables (abdominal wall trauma, Glasgow Coma Scale Score <14, and abdominal tenderness) were found to be stable. A CDI using only these three variables would achieve lower sensitivity than the original PECARN CDI with seven variables on internal PECARN validation but achieve the same performance on external PedSRC validation (sensitivity 96.8% and specificity 44%). Using only these variables, we developed a PCS CDI which had a lower sensitivity than the original PECARN CDI on internal PECARN validation but performed the same on external PedSRC validation (sensitivity 96.8% and specificity 44%). Conclusion The PCS data science framework vetted the PECARN CDI and its constituent predictor variables prior to external validation. We found that the 3 stable predictor variables represented all of the PECARN CDI’s predictive performance on independent external validation. The PCS framework offers a less resource-intensive method than prospective validation to vet CDIs before external validation. We also found that the PECARN CDI will generalize well to new populations and should be prospectively externally validated. The PCS framework offers a potential strategy to increase the chance of a successful (costly) prospective validation. 
    more » « less
  6. Recent deep-learning models have achieved impressive prediction performance, but often sacrifice interpretability and computational efficiency. Interpretability is crucial in many disciplines, such as science and medicine, where models must be carefully vetted or where interpretation is the goal itself. Moreover, interpretable models are concise and often yield computational efficiency. Here, we propose adaptive wavelet distillation (AWD), a method which aims to distill information from a trained neural network into a wavelet transform. Specifically, AWD penalizes feature attributions of a neural network in the wavelet domain to learn an effective multi-resolution wavelet transform. The resulting model is highly predictive, concise, computationally efficient, and has properties (such as a multi-scale structure) which make it easy to interpret. In close collaboration with domain experts, we showcase how AWD addresses challenges in two real-world settings: cosmological parameter inference and molecular-partner prediction. In both cases, AWD yields a scientifically interpretable and concise model which gives predictive performance better than state-of-the-art neural networks. Moreover, AWD identifies predictive features that are scientifically meaningful in the context of respective domains. All code and models are released in a full-fledged package available on Github. 
    more » « less
  7. Machine-learning models have demonstrated great success in learning complex patterns that enable them to make predictions about unobserved data. In addition to using models for prediction, the ability to interpret what a model has learned is receiving an increasing amount of attention. However, this increased focus has led to considerable confusion about the notion of interpretability. In particular, it is unclear how the wide array of proposed interpretation methods are related and what common concepts can be used to evaluate them. We aim to address these concerns by defining interpretability in the context of machine learning and introducing the predictive, descriptive, relevant (PDR) framework for discussing interpretations. The PDR framework provides 3 overarching desiderata for evaluation: predictive accuracy, descriptive accuracy, and relevancy, with relevancy judged relative to a human audience. Moreover, to help manage the deluge of interpretation methods, we introduce a categorization of existing techniques into model-based and post hoc categories, with subgroups including sparsity, modularity, and simulatability. To demonstrate how practitioners can use the PDR framework to evaluate and understand interpretations, we provide numerous real-world examples. These examples highlight the often underappreciated role played by human audiences in discussions of interpretability. Finally, based on our framework, we discuss limitations of existing methods and directions for future work. We hope that this work will provide a common vocabulary that will make it easier for both practitioners and researchers to discuss and choose from the full range of interpretation methods. 
    more » « less
  8. Abstract

    The outer membrane is a key virulence determinant of gram‐negative bacteria. InYersinia pestis, the deadly agent that causes plague, the protein Ail and lipopolysaccharide (LPS)6enhance lethality by promoting resistance to human innate immunity and antibiotics, enabling bacteria to proliferate in the human host. Their functions are highly coordinated. Here we describe how they cooperate to promote pathogenesis. Using a multidisciplinary approach, we identify mutually constructive interactions between Ail and LPS that produce an extended conformation of Ail at the membrane surface, cause thickening and rigidification of the LPS membrane, and collectively promoteY. pestissurvival in human serum, antibiotic resistance, and cell envelope integrity. The results highlight the importance of the Ail–LPS assembly as an organized whole, rather than its individual components, and provide a handle for targetingY. pestispathogenesis.

     
    more » « less