skip to main content


Search for: All records

Creators/Authors contains: "Singh, Simran"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available June 10, 2025
  2. Accessing high-quality video content can be challenging due to insufficient and unstable network bandwidth. Recent advances in neural enhancement have shown promising results in improving the quality of degraded videos through deep learning. Neural-Enhanced Streaming (NES) incorporates this new approach into video streaming, allowing users to download low-quality video segments and then enhance them to obtain high-quality content without violating the playback of the video stream. We introduce BONES, an NES control algorithm that jointly manages the network and computational resources to maximize the quality of experience (QoE) of the user. BONES formulates NES as a Lyapunov optimization problem and solves it in an online manner with near-optimal performance, making it the first NES algorithm to provide a theoretical performance guarantee. Comprehensive experimental results indicate that BONES increases QoE by 5% to 20% over state-of-the-art algorithms with minimal overhead. Our code is available at https://github.com/UMass-LIDS/bones.

     
    more » « less
    Free, publicly-accessible full text available May 21, 2025
  3. Unmanned aerial vehicles (UAVs) can supplement the existing ground-based heterogeneous cellular networks (Het-Nets), by replacing/supporting damaged infrastructure, providing real-time video support at the site of an emergency, offloading traffic in congested areas, extending coverage, and filling coverage gaps. In this paper, we introduce distributed algorithms that leverage UAV mobility, enhanced inter-cell interference coordination (ICIC), and cell range expansion (CRE) techniques defined in 3GPP Release-10 and 3GPP Release-11. Through Monte-Carlo simulations, we compare the system-wide 5th percentile spectral efficiency (5pSE) while optimizing the performance using a brute force algorithm, a heuristic-based sequential algorithm, and a deep Q-learning algorithm. The autonomous UAVs jointly optimize their location, ICIC parameters, and CRE to maximize 5pSE gains and minimize the outage probability. Our results show that the ICIC technique relying on a simple heuristic outperforms the ICIC technique based on deep Q-learning. Taking advantage of the multiple optimization parameters for interference coordination, the heuristic based ICIC technique can achieve 5pSE values that are reasonably close to those achieved with exhaustive brute force search techniques, at a significantly lower computational complexity. 
    more » « less